電気設備計算編

はじめにお読み下さい。

- 1、電気設備計算ソフト 2025 のデータは<mark>設計基準令和 6 年版</mark>に準拠して作成しています。 これ迄のH30 年版から大きく変更になった項目について説明します。
 - (1) 照明器具の公共施設品番が変更になったのとグレア分類を記入する欄が増えましたので計算書書式を変えています。
 - (注1) 輝度計算、消費電力削減効果の評価は今回ソフト化しておりません。どうしても必要な場合は照明メーカーに依頼して下さい。
 - (注2) 改修工事で現状の照度がいくらあるかを把握する必要があります。その場合 は古い様式(旧様式)を使用して蛍光灯器具を選択して下さい。
 - (2) 短絡電流計算において変圧器のパーセント抵抗、パーセントリアクタンス、短絡 電流値が変更になっています。
 - (3) 力率計算において変圧器の無負荷時無効電力が変更になりました。
 - (4) ケーブルラック幅算定でこれまで電力ケーブルのみでしたが、弱電ケーブルが 追加されました。
 - ※ e c o 労師シリーズは発売から10年余り累計4000本、多くのユーザーさんに ご利用いただいております。ユーザーさんからの問合せで技術的な問合せは電路計算 が約80%、負荷集計、短絡、変圧器、力率が約15%で残りはその他です。照度計 算、発電機、テレビ等の弱電はメーカーさんに依頼しているとのこと。今回バージョ ンアップするにおいて多くのユーザーさんからメーカーに依頼できるものは省略して、 販売価格を値上げすることが無いようにして欲しいとのご要望をいただいております。
 - ※設計基準がほぼ3年毎に改訂し、その後計算書作成の手引き様式が発売されますが 改訂されて良くなった書式もありますが、逆に分かりにくくなった様式もあります。 そこで、これ迄で最も使い易い様式でまとめました。但し、データは令和6年版に準 拠しております。
- 2、ガイドブックの全面的改訂。
 - (1) これ迄の問合せ、質疑を参考にして、より解り易いガイドブックに改訂しました。
 - (2) 特に電路計算(電圧降下)は例題を示しながら、重点的に説明しております。
 - (3) 電気、給排水、空調、耐震の4種類を一冊にまとめました。前述のほとんど使用 しない計算書はガイドブックに含まずCDに全てまとめていますので参考にして 下さい。

4、サポートについて。

- (1) ご購入者は(一社)日本設備設計事務所協会連合会ホームページのトップページ 右の出版物・ソフトから入っていただいてeco労師「ユーザー登録」から登録して 下さい。質問等はeco労師の「ユーザーお問い合わせ」より行って下さい。不具 合状況について、なるべく具体的に記入して下さい。ユーザー登録完了後でなくて は問合せできません。また電話での直接問合せは受付できません。
- (2) 計算ソフト 2025 購入者様には無償サポートを継続しますが、これ迄の 2022 年版 ソフトについては 2025 年 6 月末で終了します。2022 年版の原版がなくなりますので ご理解下さい。
- (3) 下記については無償でのサポートはできません。
 - ①USB紛失の場合は新規購入となります。
 - ②USB破損(傷付けた)の場合は実費で交換。この場合、破損したUSBを (一社)日本設備設計事務所協会連合会に送って下さい。検証後、交換USB を送付致します。
 - ③Excelマクロ、USBプロテクタの改ざんでソフトが正常に動作しなくなった場合はサポートできません。新規購入となります。

目 次

様式	電-1	表 紙	
様式	電-2	照度計算書	
		※輝度計算と照明制御装置による消費電力削	減効果の評価は
		入っていません。	
様式	電-4	電灯設備負荷容量集計表	
様式	電-5	動力設備負荷表	
様式	電-6	動力負荷容量集計表	
様式	電-7	高調波流出電流計算書 vb	
様式	電-8	電路計算書	
様式	電-9	ケーブルラック計算書	
様式	電-10	短絡電流計算書	※よく使う最大最終方式
様式	電-11	変圧器容量計算書	(防災負荷又は一般負荷のみ)
様式	電-12	力率改善用コンデンサ容量計算書	入力例を添付しています。
様式	電-13	直流電源装置計算書	
様式	電-14	非常用発電設備計算書	
様式	電-15	太陽光発電設備計算書	
様式	電-16	風力発電設備計算書	ガイドブックからは
様式	電-17	交換装置容量計算書	省略しています。
様式	電-19	構内情報通信網スイッチ能力計算書	CD-ROMを参照
様式	電-21	拡声設備増幅器定格出力計算書	して下さい。
様式	電-22	テレビ共同受信設備テレビ端子電圧計算書	
様式	電-23	監視カメラ設備録画装置容量計算書	

- ・設計計算書作成の手引で様式 電-18、電-20が欠番となっているためそのまま欠番としています。
- ・様式 電-14 非常用発電機は容量が大きいためソフトは別ファイルとしています。

設計 第 書

2025年 4月 🗁 シート右上の例を参考に日付を入力すると入ります。

- ・USBは計算ソフトのキー(鍵)になっています。キーを差込んだ状態で作動します。
- ・マクロを有効にするを選択(コンテンツの有効化)し、ガイドにそって入力して下さい。 物件名・日付は全てのシートに連動します。

確認印

照度計算

(1) 器具(又はランプ)の数は、次により算出します。

$$N = \frac{E \cdot A}{F \cdot U \cdot M}$$

ここに、N: 器具の数〔台〕

E:設計照度 [1x] =自動入力しますが変更可です。

A:被照明面積〔 m^2 〕=手入力

F:器具の光束 [lm] =自動入力します。

U:固有照明率(又は照明率)=自動入力します。

M:保守率=自動入力します。

(2) 照明器具の保守率は、周囲環境と照明器具形状を考慮し、 下表を参考に選定する。

ただし、分煙された事務室の場合、周囲環境の分類は、良いとする。

照明器具の周囲環境の分類

	ソバン1 88 ンイ・2 1-4 5日 51/20・2 24	797
周囲環境	環境条件	主な室の例
良い	じんあいの発生が少なく 常に室内の空気が清浄に 保たれている場所	設計室、分煙された室
	一般に使用される施設、場所	事務室、玄関ホール、 待合室
普通	水蒸気、じんあい、煙など がそれほど多く発生しない 場所	電気室、倉庫
悪い	水蒸気、じんあい、煙などを 多量に発生する場所	厨房、屋内駐車場

備考 JIEG-001 「照明設計の保守率と保守計画」より抜粋

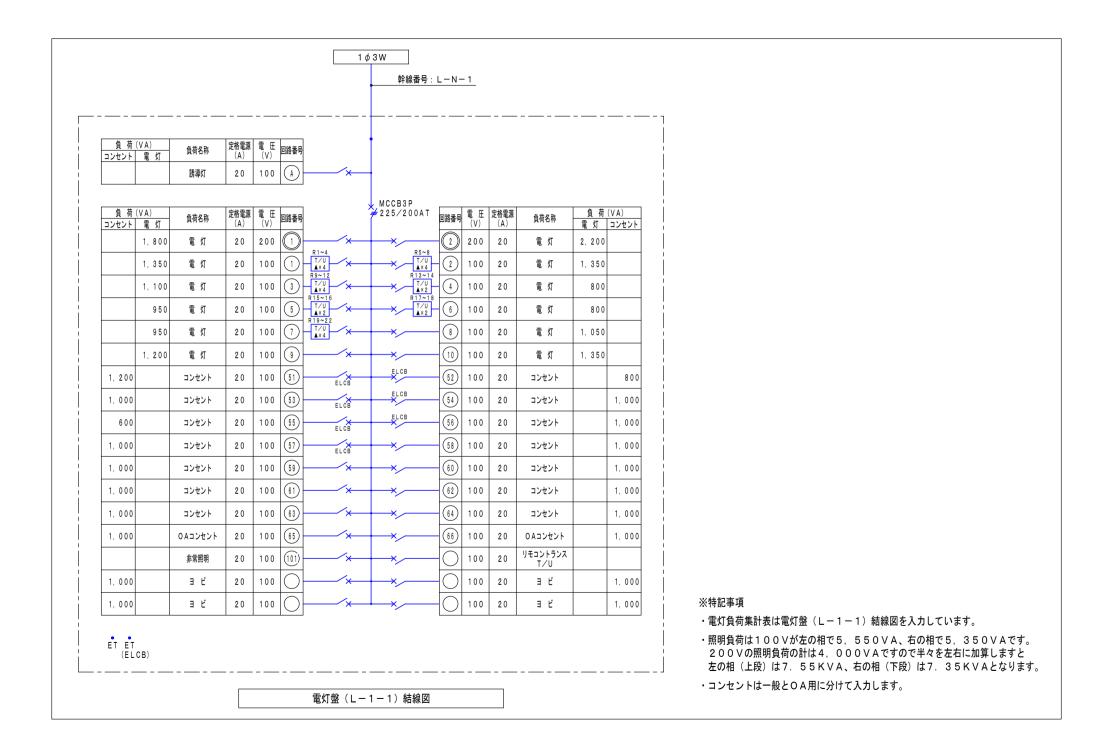
LED照明器具の種類 公共施設用照明器具 2025 年版 JIL5004:2025 参考

照明器具形式	器具の種類
ベースライト	LRS3 LRS3CC LRS3CG1A
下面開放形	LRSA20 LRS6 LRS6CG1A
一面用双形	LRS6SA20 LRS4 LRS7 LRS15
ベースライト	LRSL3G0 LRS6L5 LR3L3G0
埋込ルーバ	LKSLSGO LKSCS LKSLSGO
ベースライト	LRS3F1 LR4F1 LRS6F1
埋込乳白パネル	LRS9F1
ベースライト	I DC9MD /DD I DC1 OMD /DD
埋込防湿・防雨	LRS3MP/RP LRS10MP/RP
ベースライト	1001 1001/0 1000 10015
直付箱型	LSS1 LDS1/2 LSS6 LSS15
ベースライト	LOCALID /DD
直付防湿・防雨	LSS1MP/RP
ベースライト	1007
直付天井面も照射	LSS7
ベースライト	LSS9 LDS1/2-LSS9
富士型	LSS10 LDS1/2-LSS10
ベースライト	LCCOMD /DD LCC1 OMD /DD
富士型防湿・防雨	LSS9MP/RP LSS10MP/RP
ベースライト	LSR1M LSR1W LSR1AM LSR2M
高天井用	LSR2W LSR2AM LSR3W
ダウンライト	LRS1 LDS1 LDS2 LRS2
一般	LRS11R LRS12
ダウンライト	I DC1DD
防雨型	LRS1RP
·	

- (注1)赤文字がよくつかわれている器具です。
- (注 2) ダウンライト LRS12 は玄関ホール専用とし、2019 年版より 追加になっています。

各室の照度

室名	設計照度〔1x〕
事務室	750
上級室	750
設計図、製図室	750
電子計算機室	500
監視室、制御室	500
厨房	500
会議室、講堂	500
実験実習室	500
保健室	500
印刷室 (学校)	300
印刷室 (事務所)	500
宿直室	300
研究室	500
診察室	500


室名	設計照度〔1x〕
調理室	500
化粧室	300
食堂	300
電気室、機械室*1	200
書庫*1	200
倉庫*1	100
湯沸室	200
便所、洗面所、更衣室	200
EVホール、受付	300
階段室	150
玄関ホール*3	100*3
廊下*2	100
車庫	75

備考 (1) JIS Z 9110「照明基準総則」より抜粋

- (2) 設計照度は、作業面(事務室、上級室等では床上 0.8 m、玄関ホール、廊下等では床面)における維持照度とし、照度計算に用いる目安の数値とする。ただし、視覚条件が通常と異なる場合の設計照度は、JIS Z 9110「照明基準総則」4.3.3「照度段階」に示す照度段階で1段階上下させてもよい。
- 注 *1 盤類、機器、書架等の配置、室の用途に応じて必要な照度を確保する。
 - *2 維持照度のほか、空間の明るさ感を考慮する。
 - *3 玄関ホールにおいて、掲示物等の閲覧が想定される場合は、JIS Z 9110「照明基準総則」4.3.2「推奨照度」における「視覚条件が通常と異なる場合」とし、設計照度は1段階上の150[lx]とする。

_						33年	版より	追加	加され ⁻	ていま	す。 -																		(様	式 電-2)	7	
	照	度	計算	算 =	- 書				係しまっ	せん			建:	物名称_	ECO労自	ホビル新	築工事											年	月 日			
[[E]E-3856-		室	夂				明			か シア	設計 照度	間口	室 の 奥行	大きさ 面積		作業面 高 さ		光源と 作業面 の高さ		旨数	反 天井	射壁	率床	照明率	保 周囲	守率	器具の数 [台]	設 器具の数	計 照度	備考	消費電力	
階 <u>数</u> 1		-=-	111		Я	/ 式			/ 4/14	分類			Y[m]	иля А[m²]		h ₁ [m]			指数	記号	[%]		[%]	U	環境	5 /	N	[台]	E[1x])HI ~5	[W]	器具の種類
1階	事	務室	2	LR	S3-4-6	5	4		6, 500	G1b	750	14. 2	7. 7	109. 3	2. 7	0.8	0. 0	1.9	2. 63	D	70	50	10	0. 83	良い	0. 81	18. 8	20	800	南面	56	LED ベースライト 埋込下面開放 3
1階	事	務室		LR	S3-4-6	5			6, 500	G1b	750	21. 4	7. 7	164. 8	2. 7	0.8	0. 0	1.9	2. 98	С	70	50	10	0. 87	良い	0. 81	27. 0	28	778	北面	56	LED ペースライト 埋込下面開放
1階	会	議室		LR	S3-4-6	5			6, 500	G1b	500	4. 6	7. 7	35. 4	2. 7	0. 8	0. 0	1.9	1. 51	F	70	50	10	0. 71	良い	0. 81	4. 8	6	634		56	LED ベースライト 埋込下面開放
1階	廊	F		LR	S11R-1	7			1, 700	-	100	43. 2	1.8	77. 8	2. 5	0. 0	0.0	2. 5	0. 69	J	70	50	10	0. 43	普通	0. 72	14. 8	16	108		26	LED ダウンライト 一般
1階	便	所		LR	S1-17				1, 700	-	200	5. 9	1. 4	8. 3	2. 4	0. 0	0. 0	2. 4	0. 47	J	70	50	10	0. 47	普通	0. 72	2. 9	3	208		22	LED ダウンライト 一般
1階	玄	関ホール		LR	S1-17				1, 700	-	150	7. 0	3. 3	23. 1	2. 7	0. 0	0. 0	2. 7	0. 83	I	70	50	10	0. 56	普通	0. 72	5. 1	6	178		22	LED ダウンライト 一般
1階	湯	沸室		LR	S6-4-2	3			2, 300	G2	200	1.8	1.8	3. 2	2. 4	0.8	0. 0	1.6	0. 56	J	70	50	10	0. 43	普通	0. 77	0. 9	1	238		22	LED ベースライト 埋込下面開放
1階	所:	長室		LR	S4-6-6	3			6, 300	G1b	750	7. 3	7. 7	56. 2	2. 7	0. 8	0.0	1.9	1. 97	Е	70	50	10	0. 76	良い	0. 81	10. 9	12	828		60	LED ベースライト 埋込下面開放
1階	倉川	車		LS	S1-4-6	5			6, 500	-	100	7. 3	7. 7	56. 2	3. 6	0. 0	1. 0	2. 6	1. 44	F	70	50	10	0. 68	普通	0. 81	1. 6	2	127		56	LED ベースライト 直付箱型
1階	休	養室		LR	S9F1-4	-45			4, 500	G2	200	2. 8	5. 5	15. 4	2. 6	0. 0	0. 0	2. 6	0. 71	I	70	50	10	0. 50	良い	0. 81	1. 7	2	237		45	LED ベースライト 埋込下面開放
							計算	红式	の説明																							
							1. 隆	皆数	は1を2	しれる	と1階、	2を入	hると2	階と入	ります																	
							2 室	三名	はリス	L # L]選択	て下さ	1.	リスト	にない	場合は	手入力 [。]	です.)														
																ます。	• • • • •				`											
																	(原田	יכ ני בי	C 1 C	. .	,											
											きました。																					
							5. 伢	₹守:	率の周	囲環均	は良い	、普通	、悪い	を選択	します	0																
備考	(1	(1) 光源と作業面の高さし ※改修工事で既設の照度を検討する場合は目次の旧様式に蛍光灯がはいっています。																														
	(2) 室	指数に	は次に	よる。						v • v			室指数	5	4	3	2.		- 2)	1.	5	1, 2		H 1	I 0, 8	J 0. 6				
								室			$\frac{Y \cdot Y}{X + Y}$	-			4. 5	4. 5未満	3.5	2.7		2.		1.		1. 3		1. 12	0.8	0. 6				
	(3) 器	具の数	ţΝï	は次によ	:る。			N =	$\frac{E \cdot E}{F \cdot U}$	$\frac{A}{I \cdot M}$			範囲	以上	→ 3.5以上	≀ 2. 75	2.2		1.		1.	`	. ≀ 1. 1	2	∂ 0. 9	∂ 0. 7	未満				
																												21-024				

	照度	計算	書					建物	物名称	ECO労f	「ビル新	<u>築工事</u>											年	月	且	
階数	室	名	照明器具型式等	等	ランプ光東 <i>F</i> [1m]	照度 E[1x]	間口	ß屋の 奥行 Y[m]	大き 面積 A[㎡]	高さ		器具の 下 り h ₂ [m]	光源の 高 さ <i>H</i> [m]	室 指指数		反 天井 [%]	射 ^図 壁 [%]	k 床 [%]	照明率 <i>U</i>	保生 周囲 環境	守率 M	1台の 灯数 n[本]	台数 N/n [台]	設 照度 <i>E</i> [1x]		備考
1階	事務室		FHF32W 下面開放 直付 2灯用 定格出:	カ	3, 520	750	10. 0	10. 0			0.8	0.0		2. 63	D	70	50			普通	0. 69	2	24	781		
			FHE3.3M 下面開放																							
1階	事務室		FHF32W 下面開放 埋込 2灯用 高出力]	4, 950	750	10. 0	10. 0	100. 0	2. 7	0. 8	0.0	1.9	2. 63	D	70	50	10	0. 69	普通	0. 69	2	16	754	16	
				1 11	算式の記	88																				
					現在設置		こいる蛍	(光灯	器具をL	ED器具	に改修	する場1	合に現在	Eの照	度がl	ハくら	らかを	<u>.</u>								
					判定する																					
				•	この書豆	だは目と	で旧様	様式を作	使用しる	ます。																
H=	Z -(\mathbf{h}_1 + \mathbf{h}_2)	室	指数= -	$X \cdot Y$ $H(X+Y)$	<u> </u>	記号 室指数 範囲		₹	>	>	>	F 1.5 1.75未満 ≀	1. 38; (25 未満	1. 12.	未満	0.9	. 8 未満 (J 0. 6 0. 7			N: N=	灯数[本 <u>E・</u> F・U	$\begin{bmatrix} A \\ \cdot M \end{bmatrix}$	
								以上	3.5以上	2. 75以上	2. 25以上	1.75以上	1.38以上	1. 12.	以上	رِ 9. 9	以上	0.7	以上	未満						

電灯設備	負荷容量集訂	十表		<u>a</u>	*物名称	ECO労師 L	ゴル新築コ	<u>[事</u>						_	年 月	<u>日</u>
	変圧器名称:	No.1単相変	圧器													
幹線番号 又は名称	分電盤 名 称	電気方式	回路種別	照 (f ₁) L 200V		コンセント (FC) (f ₂) (U, OA以外) C[kVA] 100V	FCUコンセント (f ₃) FC[kVA] 100V	0A負荷 (f ₄) <i>OA</i> [kVA] 100V	非常用照明 [kVA] 100V	その [.] [kVA 200V		予備 [kVA]	100V回路 の合計 「kVA]	設計負 荷電流 [A]	主幹器具 定格電流 [A]
L-N-1	L-1-1	単相3線	AC	4. 00	5. 55 5. 35		6. 80 6. 80		1. 00 1. 00				2. 00	15. 35 15. 15	173. 5	175
				-											上書	き変更可
			· 結線图 · 主幹報 上書。 · 電路記	図に基づ 図の負荷 器具定格 き変更可 計算書で します。	表記はVA 電流値は です。 設計負荷	ですがこ合計値よ	この集計表	R名称は適当を をはkVAですの して自動入力を な値は正確に に重要となっ)で注意して されますが は大きい値 <i>の</i>							
回路別負荷	常力	用回路(AC))	4. 00	10. 90		13. 60		2.00					30. 50		
容量合計 [kVA]		機回路(GG 原装置回路														
[17,117]	負荷種別容量		(DC)		14. 90		13. 60		2. 00				4. 00			
備考	(3) 負荷容量 (4) 設計負荷 ① 単	川の記載は右	古による。 は右による。 Fによる。 Vの場合	AC:常用[i	回路 GG 式 200V-:	C:発電機 100V:	回路 DO	$egin{array}{cccc} E:$ 直流電源装置 $egin{array}{cccc} L_1 & L_1 & L_2 & L \end{array}$	2:第1相~第2 1:第1相~中位 2:第2相~中位	相間合計容量 注相間合計容量 注相間合計容量 ③ 三相4線z <i>I</i> =	k [kVA] ₹400-230Vø	L ₁₂₃ :三	三相機器の	相間合計容 負荷合計容 てきいもの	量 [kVA]	[A]

動力設備負荷表及び集計表

動力設備負荷表について説明します。

- 1、負荷名称、負荷記号は手入力です。入力例は適当に入れています。
- 2、夏・冬の稼動区分は選択です。
- 3、操作・制御方式は右の操作方式を選択すると自動入力されます。但し、電源送りは入りません。
- 4、定格出力は手入力です。台数は右の操作方式選択で自動入力されます。自動交互は1台、交互同時は2台と入ります。
- 5、定格出力、電流値、負荷容量は設計基準の数値を参考としています。表にない数値を入力すると電流の欄に手入力と表示されます。この場合、 調査値(カタログ・メーカー問合せ等)を入れて下さい。比率で入れても大差ないと考えます。
- 6、負荷容量 [kVA] は√3×電圧×定格電流の値です。
- 7、需要率が不明な場合は空白のままとしておいて下さい。(100%で計算します。) 明らかに 8 割の場合は 0.8 でなく 80 と入れます。
- 8、最大使用電流(規約電流の合計)は設計基準を参考にしていますが内線規程も設備手帖等も同じです。
- 9、主幹器具定格電流(ブレーカーの容量)は内線規程や設備手帖等と同じです。 基本は最大容量の電動機の定格電流の3倍に他の電動機の定格電流を加えた値以下にすることと定格電流(規約電流)の130%以上、180%以下とする(内線規程)の両方を判断するのが正です。
- 10、左下の夏・冬の出力合計は [kW] で<u>負荷容量合計は [kVA]</u> ですので注意して下さい。 力率や変圧器容量を算定する場合は [kVA] が重要になってきます。
- 11、(注)令和3年版より最大使用電流の下段に設計負荷電流を入力する欄ができました。(自動で計算します。)

																	(様:	式 電-5)
動力設備負荷表							建物名称	ECO労師ビ	ル新築工	<u>事</u>							年月	<u> </u>
幹線番号又は名称:				制御	盤名称:					回路種別:	常用	電圧:	200V					
		25° 110	操作・制	御方式			電動機等		冷	凍 機	ハ゜ッケーシ゛	形空調機	空 調	関係	衛生	関係	1	の他
負 荷 名 称	負荷記号			インバータ	定格出	力	規約電流	入力容量		Pa[kVA]		t Pa[kVA]	入力容量	U		P _c [kVA]		量 [kVA]
		働区分	制御方式	運転	[kW]	台	[A]	[kVA]	夏期 負荷容量	冬期 負荷容量	夏期 負荷容量	冬期 負荷容量	夏期 負荷容量	冬期 負荷容量	夏期 負荷容量	冬期 負荷容量	夏期 負荷容量	冬期 負荷容量
冷却水ポンプ	PCD-1	0	15-1	0	11	1	39. 6	13. 8					13. 80					
吸収式冷温水機	RH-1	ΟΔ	選択して	て下さい	。 5. 5	1	24. 6	8. 5	8. 53	8. 53								
冷温水1次ポンプ	PH-1	ΟΔ	4-1		7. 5	1	34. 0	11.8					11. 78	11. 78				
冷温水2次ポンプ	PH-2-1	ΟΔ	4-1		3. 7	1	16.8	5. 8					5. 82	5. 82				
冷温水2次ポンプ	PH-2-2	ΟΔ	4-1		3. 7	1	16.8	5. 8					5. 82	5. 82				
冷温水2次ポンプ	PH-2-3	ΟΔ	4-1		3. 7	1	16.8	5. 8					5. 82	5. 82				
空調機	AC-B1	ΟΔ	3		2. 2	1	11.1	3. 9					3. 85	3. 85				
空気清浄器	AF-B1	ΟΔ			0.4	1	3. 2	1.1					1.11	1. 11				
					kWです				kVAです				kVAです					
					Ţ				1				1					
百世(赤毛) 松 川 上 人	31 (ASS) 46	nia 2 A	S-24 \ F1.00°	,	37.	. 70	夏期入	力容量計	8. 53				48. 00					
夏期電動機出力合	·計(電期機	以外を召	i (L') [KW.	J	11.	. 00	[k	VA]	0.00				13. 80					
冬期電動機出力合	計 (雪新株	いか たる	-\$a) [lw]	1	26.	. 70	冬期入	力容量計		8. 53				34. 20				
で別 电到域口刀口	日 (电到//双	(A)/1.4 E	147) [KW	J		. 00		VA]		0. 00				0.00				
電動機出力合計	· (雷動機以	外を含む	e) [kW]			. 70		容量計		53			48.					
		8. 53+ 4				. 00	_	VA]		00			13.	80				
夏期入力容量合計(夏期負荷容量合計)	56. 53	電動	動機中		冷却水	ポン	プ	需要率[%]	備考 (1)	夏季・冬	季稼働区分の	の記載は右に	こよる。					
[kVA]	13. 80	最大 -8 53+3	:のもの 4-2	定格	出力 [kW	7]	11			〇:夏期	こ稼働する。	もの △:ᡧ	・期に稼働す	るもの				
冬期入力容量合計 (冬期負荷容量合計)	42. 73	最大	使用電流(規約電流	(合計)	A]	16	2. 9	(2)	冬期・夏	朝及び電動村	幾出力並びに	二入力(負荷	f) 容量の合	計への記載	は次による	0	
(冬期貝何谷里百訂) [kVA]	0.00		設計負	荷電流	[A]		1	80 (注1))	上段	上段:電動	機出力又は	入力(負荷) 容量				
入力容量合計 (負荷容量合計) [kVA]	56. 53 13. 80		主幹器具の)定格電	一 流 [A]		2	00		計算式(は操作・	制御方式に	こけるカゴ	おません			

令和3年度版より新しく欄ができました。

負荷の種類の標準電動機の規約電流値ははトップランナーモータ 値を示し、それ以外の場合は上書手入力してください。

操作方式	用途	負荷の種別
インパータ(パイパス回路無)	空調関係	標準電動機(可変速)
電源送り	冷凍機	標準電動機
試験-自動	空調関係	標準電動機
手動-自動	空調関係	標準電動機
電源送り	空調関係	標準電動機

令和3年版からエレベータ、エスカレータの データは消去されています。

- ・可変速(インバータ)を選択した場合は上段と下段にも入力されます。
- ・冷却水ポンプの入力容量は39.6A×200V×1.732 (√3) =13.8kVAです。
- (注1) 設計負荷電流は162.9×1.1倍 (50Aを超えるため) =179.19→180Aです。 50A以下の場合は1.25倍します。電路計算書の設計負荷電流は規約電流ではなく 設計負荷電流を入力します。

動力設備負荷表						建物名称	FCO労師 F	・	<u> </u>							年 月	式 電-5) 日
幹線番号又は名称:				制御	盤名称:	VE IN THIS	2007) 100	77-401-22-	<u>-</u> 回路種別:	発電機	電圧:	200V					
		夏期・	操作・制	御方式		電動機等			東機 はPa[kVA]	パッケージ	 		関係 :P _b [kVA]	衛 生 入力容量	関係 P[kVA]		の他 量[kVA]
負荷名称	負荷記号	冬期稼 働区分	操作• 制御方式	インバータ 運転	定格出力 [kW] 台	規約電流 [A]	入力容量 [kVA]	夏期負荷容量	冬期 負荷容量	夏期 負荷容量	冬期 負荷容量	夏期 負荷容量	冬期 負荷容量	夏期 負荷容量	冬期 負荷容量	夏期 負荷容量	冬期 負荷容量
合水ポンプ	PW-1	ΟΔ	9	0	5. 5 1		7. 1							7. 11	7. 11		
5水排水ポンプ 「	PD-1	ΟΔ	10		2. 2 2	22. 2	7. 7							7. 70	7. 70		
推排水ポンプ	PD-2	ΟΔ	10		2. 2 2	22. 2	7.7							7. 70	7. 70		
勇水ポンプ リ	PD-3	ΟΔ	4-1		2. 2 1	11.1	3. 9							3. 85	3. 85		
雨水ポンプ リー	PD-4	ΟΔ	9		3.8 1	手入力											
					kWです									kVAです			
夏期電動機出力合計	十(電動機)	以外を含	む) [kW]		20. 30		力容量計 VA]							26. 36 7. 11			
冬期電動機出力合計	十(電動機)	以外を含	む) [kW]		20. 30 5. 50		力容量計 VA]								26. 36 7. 11		
電動機出力合計((電動機以:	外を含む	·) [kW]		20. 30 5. 50		容量計 VA]							26. 7.			
夏期入力容量合計 (夏期負荷容量合計) [kVA]	26. 36 7. 11		が機中 のもの	定格	給水ポン 出力 [kW]	プ 5.5	需要率[%]	備考 (1)	夏季・冬季 〇:夏期/)記載は右に oの △:冬		るもの				
冬期入力容量合計 (冬期負荷容量合計) [kVA]	26. 36 7. 11	最大		規約電流 帯電流 [合計) [A]		76 34	(2)	冬期・夏期・夏期・夏期・夏月		と 機出力並びに 機出力又は			計への記載に	は次による。		
入力容量合計 (負荷容量合計) [kVA]	26. 36 7. 11		主幹器具の				25 上書	き変更可	下段					ツバータ運転刀	、力(負荷)	容量	

負荷の種類の標準電動機の規約電流値ははトップランナーモータ 値を示し、それ以外の場合は上書手入力してください。

操作方式	用途	負荷の種別
自動交互	衛生関係	標準電動機(可変速)
自動交互同時	衛生関係	標準電動機
自動交互同時	衛生関係	標準電動機
試験-自動	衛生関係	標準電動機
自動交互	衛生関係	標準電動機

76×1.1=83.6 ∴84[A]

計算式の説明

・電動機出力20.3kWですので表2-2の23.2W以下でみて、直入最大5.5kWでは ブレーカーは125Aが入りますが変更可です。参考までに100Aでも十分です。

(様式 電-5) 動力設備負荷表 建物名称 ECO労師ビル新築工事 年 月 日 幹線番号又は名称: 制御盤名称: 回路種別: 常用 電圧: 200V 操作・制御方式 雷動機等 冷凍機 パッケージ形空調機 空調関係 衛生関係 その他 負荷の種類の標準電動機の規約電流値ははトップランナーモータ 夏期. 入力容量 Pa[kVA] 入力容量 P a [kVA] 入力容量 P L [kVA] 入力容量 P。[kVA] 入力容量 [kVA] 値を示し、それ以外の場合は上書手入力してください。 負荷記号 冬期稼 定格出力 規約電流 入力容量 負荷名称 操作• インバータ 夏期 冬期 夏期 冬期 夏期 夏期 冬期 夏期 冬期 働区分 制御方式 運転 負荷容量 負荷容量 [kW] 台 ΓAl [kVA] 負荷容量 負荷容量 負荷容量 負荷容量 負荷容量 負荷容量 負荷容量 負荷容量 操作方式 用涂 負荷の種別 排気ファンー1 Δ 2-1 1.5 8.0 2.8 2. 78 2.78 手動-遠方 空調関係 標準電動機 排気ファンー2 ΟΔ 2-1 0.75 4. 6 1.6 1.60 1.60 標準電動機 手動-遠方 空調関係 ミキサー ΟΔ 0.4 3. 2 1.1 1, 11 1, 11 電源送り 衛生関係 標準電動機 0.4 1.11 標準電動機 回転式練機 ΟΔ 3. 2 1.1 1.11 電源送り 衛生関係 包装機 $O\Delta$ 0.4 3. 2 1.1 1, 11 1, 11 電源送り 空調関係 標準電動機 3. 45 夏期入力容量計 5. 49 2. 22 夏期電動機出力合計(電動機以外を含む) [kW] 0.00 0.00 0.00 [kVA] 3, 45 冬期入力容量計 5. 49 2. 22 冬期電動機出力合計(電動機以外を含む) [kW] 0.00 [kVA] 0.00 0.00 3. 45 5. 49 入力容量計 2. 22 電動機出力合計(電動機以外を含む) [kW] 0.00 0.00 0.00 [kVA] 夏期入力容量合計 排気ファンー1 7. 71 需要率[%] 備考(1) 夏季・冬季稼働区分の記載は右による。 雷動機中 (夏期負荷容量合計) 最大のもの 0.00 定格出力「kW] 1.5 ○:夏期に稼働するもの △:冬期に稼働するもの [kVA] 冬期入力容量合計 7. 71 最大使用電流(規約電流合計) [A] 22. 2 (2) 冬期・夏期及び電動機出力並びに入力(負荷)容量の合計への記載は次による。 (冬期負荷容量合計) 0.00 設計負荷電流 [A] 28 上段:電動機出力又は入力(負荷)容量 [kVA] 入力容量合計 7. 71 下段:上段のうちインバータ運転電動機出力又はインバータ運転入力(負荷)容量 (負荷容量合計) 主幹器具の定格電流 [A] 30 0.00 [kVA] 計算式の説明 この設計負荷電流を電路計算書の ・規約電流22.2A×1.25倍=27.75→28Aが入力されますが、この設計負荷電流欄は 令和3年計算書様式から表現されたものです。何を意味するかといえば50A以下の 設計負荷電流に入力して下さい。 場合は1.25倍、50Aを超える場合は1.1倍以上の許容電流のある電線を 布設しなければならないということです。

表 2-2 電動機回路の主幹器具の定格電流(200 V 三相誘導電動機)

		電線管	W. 1	東及び	y -					譜	入始助	の電動	機中最	大のも	Ø [kV	V3			
		ブル面	線	(3条以	T)	0.75	1.5	2.2	3.7	5.5	7.5	11	15	18.5	22	30	37	45	55
電動機 kW 数			銅	線		KA 1				V. A1	V-181-190 /	B H7 //>	電動機は	1165-1-7	20 1. (2)	DeW1	_	_	_
の総和	電流	EM-	Œ	IV		-		-	-	5.5	7.5	11	15	18.5	22	30	37	45	55
[kW] 以下	[A] 以下	最小電路	競大こう長 [m]	股 小 電 線	能大こう長 [m]					0.0			扩器定构						
3	15	[mm] 1.6	17	[mm] 1.6	18	20	30	40	-	-	3 4 4	-	-	-	-	-	-	-	-
4.5	20	2.0	20	2.0	19	30	30	40	60	-		-	-	-	-	-	-	-	-
6,3	30	[mm ²]	23	[mm²] 8	35	40	40	40	60	100/60	I	-	-	1	-	-	-	-	-
8.2	40	8	25	14	45	50	50	50	60	100/60	125/75	-	-	=	-	40	=	-	-
12	50	14	34	22	56	60	60	60	75	100/60	125	125	-	=	-	-	-	-	
15.7	75	22	35	38	60	100	100	100	100	100	125/100	125	125/150	-	-	75	-	-	-
19.5	90	22	29	38	50	100	100	100	100	100	125 100	125	125/150	150 175	=	-	200	-	-
23.2	100	38	43	38	45	125	125	125	125	125	125	125	125/150	150/	175/ 200	-	-	-	-
30	125	38	34	60	54	150	150	150	150	150	150	150	150	175	175/225	-		-	-
37.5	150	60	44	100	69	175	175	175	175	175	175	175	175	175/200	200/225	250 300	-	-	-
45	175	100	57	100	59	200	200	200	200	200	200	200	200	200	200/225	250/ 300	300 350	-	-
52.5	200	100	50	150	68	225	225	225	225	225	225	225	225	225	225	250 300	300/350	350/ 500	-
63.7	250	150	54	150	54	300	300	300	300	300	300	300	300	300	300	300	300/350	400 500	500
75	300	150	45	250	63	350	350	350	350	350	350	350	350	350	350	350	350	400/500	
86.2	350	200	45	250	54	400	400	400	400	400	400	400	400	400	400	400	400	400/500	500

備考 (1) 制御盤内に進相コンデンサを設けない場合で算定している。

- (2) 最大こう長は、末端までの電圧降下を2%とした。 (3) 「銅線」とは、金属管(線び)配線及び合成樹脂管(線び)配線において、同一管内に3本以下の電線を収める場合・金属 ダクト、フロアダクト又はセルラダクト配線の場合を示す。
- (4) 「推動機中最大のもの」には同時に始動する場合を含む。(5) 配線用途断器の定格電流は、電気設備に関する技術基準を定める省令等を条件として選定した実用上はほ最小の値とする。
- (6) 電動機中最大のもの以外の負荷機器の全てが運転されており、電動機中最大のものが始動されるとした。
- (7) 表中の配線用遮断器は直入始動、Y-公始動共用とする。ただし、段書きのものは上段直入始動、下段Y-公始動器使用 2730
- (8) 配線用連斯器を配電盤、分電盤、制御盤等の内部に施設する場合には、当該盤内の温度上昇に注意する。
- (9) トップランナーモータのみで構成される回路を施設する場合で算定している。

※この表は内線規程、設備手帖も同じです。標準電動機の場合ですので インバータ機器の場合はこの限りではありませんし、電圧降下2%とした場合です。 あくまで表は参考にして下さい。

動力設值	備負荷容量	量集計表							3	建物名称	<u>ECO労</u> 師	ビル新賀	築工事 <u></u>							年_	月日	=
変圧	E器名称 :																					
幹線番号	制御盤	冷凍标 P _a (f ₅)	[kVA]			『ッケーシ゛形 $P_a(f_5)$	[kVA]		[∵-9 (f ₅) [kVA]) [kVA]	<u>.</u>		$P_{c}(f$	《その他(₇) [kVA]	<u> </u>		[k	の他 :VA]	
又は名称	名称	常用回路 夏期負荷 冬期負荷	発電機 夏期負荷			回路 冬期負荷		幾回路 冬期負荷		路 発電回路		回路 冬期負荷		機回路 永期負荷		回路 ・ 冬期負荷		に機回路 前 冬期負荷		回路 冬期負荷		機回路 冬期負荷
			容 量			容量				客 量		容 量	容量	容量	容 量	容量	容量	容量			容量	
	P-1	5. 50 5. 50									16. 60				24. 40	24. 4	J					
	P-2				22. 60 22. 60																	
	P-3									19. 0 19. 0												
										13.0	,											
				_																		
					٤	は関係	してい	ません。			但し、こ 必要とな			荷表入力	例の値							
夏期負荷		5. 50			22. 60 22. 60					19. 0	50. 70 16. 60				24. 40							
[kV	A	5. !				22. 22.	. 6			9. 0 9. 0		50 16				2	4. 4					
冬期負荷 [kV		5. 50				24. 00 24. 00 24. 24.	.0			19. 00 19. 00 9. 0 9. 0	_ /	34. 10				24. 4	4. 4					
		荷容量総合計 [k			122. 2 58. 2 107. 0 43. 0	注1 注2	備考	夏期・タ		容量の合	計の記載に	は右による	5.	上段下段	-	負荷容量 上段のう		ベータ運転	負荷容量	İ		

高調波流出電流計算書

近年、省エネ・高効率化を図るためにインバータ機器が多くなってきました。これらの機器にはひずみ波(正弦波でない)の電流が流れ、このひずみ波電流に含まれる高調波電流によって配電線の電圧がひずみ、この系統に接続された機器や装置に悪影響を及ぼします。 悪影響は異音、振動、誤動作、焼損、ちらつき等です。インバータは交流を一度直流に変換し、周波数を変えて再び交流に変換するもので、これによって交流モーターの回転数制御が細やかに出来ますが電流をひずませる原因にもなります。

計算書作成についての説明

- 1、変圧器の合計容量を入力すると想定契約電力が設計基準の式により算定されます。
- 2、契約電力の補正率は設計基準の表より 300kW 迄は 1.0、500kW 迄は 0.9、それ以上についても自動入力されます。
- 3、電動機容量は表にあるものは入力換算しますが、ないものは調査値を入力して下さい。
- 4、回路区分は設計基準に記載されていますが入力例のように三相ブリッジ(コンデンサ平滑)リアクトルありを選択すると 発生率が入力されます。発生率は設計基準に基づいています。
- 5、インバータの稼働率は計算シートの下表を参考に入力します。
- 6、入力例で説明しますと高調波対策なしの場合5次~11次で対策が必要と赤文字で表示されます。
- 7、契約電力 1kW 当りの高調波流出電流上限値は設計基準 表 2-12 に基づいて計算します。
- 8、次にアクティブフィルター等で対策をとった場合に発生率をメーカーに確認して上書き修正します。 入力例ではパッケージ、マルチエアコン室外機のみアクティブフィルターを取付ければ良いとの結果となりましたが、発生率の変更はあくまで例ですのでメーカー等に確認が必要です。

ワンポイントアドバイス

- 1、電力会社にもよりますが一般的には受電電圧 6.6kV の場合、高調波発生機器合計が 50kVA 以下は対象外です。
- 2、50kVA を超過した場合LCフィルター、アクティブフィルター等を設置し対応します。対策後の高調波電流発生率はメーカーに問合せ確認をして下さい。

高調波流出電	法計符書	t Z±rh	勿名称															4	王 月	日 1	
,,				51 51 11 1	入力	40 -	Latin Al all I	F1 m2	105	+n 41. cz		1 4	4			5 144 lm .	~ * 			_н_	
受電電圧[kV]:	6. 6			計 [kVA] :	150		定契約電力	J [kW]:	105	契約電	力による	補正率β:	8 %H+ %	t ш а			デンサに直る		有 選技	-	
	入力	高 調	波	発	生 機	合計入力		換算		受電電圧	インバータ		10次 万	光 出 電	各次				选划	7	
負荷名称	負荷 記号	電動機 容量 [kW]	電気 方式	入力定 格容量 [kVA]	台数	定格容量 P _i	回路分 類細分 番号	係数 *1	等価容量 P ₀ =P _i ×κ _i [kVA]	算定の定 格電流						I_{n}	[mA]				
<u></u> 給水ポンプ	PW-1	2. 20	三相	2. 81	1	[kVA]	3-3	κ _i	5. 058	I ₁ [mA]	κ 0. 3	30	5次 15. 49	7次 8.63	11次 6.19	13次 3.69	17次 3. 47	19次 2.36	23次 2 . 2 1	25次 1. 62	高調波対策 三相プリッジ_C平滑
マルチAC室外機	ACP-1	11. 00	三相	13. 1	1	13. 10	3-3	1.8	23. 58	1, 146. 0	0. 55	55	132. 36	73. 75	52. 95	31. 52	29. 62	20. 17	18. 91	13. 87	直流リアクトル 三相ブ・リッシ・_C平滑 直流リアクトル
パッケージAC	ACP-2	7. 50	三相	9. 07	2	18. 14	3-3	1.8	32. 652	1, 586. 8	0. 55	55	183. 28	102. 11	73. 31	43. 64	41. 02	27. 93	26. 18	19. 20	三相ブリッジ・C平滑 直流リアクトル
パッケージAC	ACP-3	1. 50	単相	1. 95	2	3. 90	4-1	2. 3	8. 97	590. 9	0. 55	55	113. 75	70. 20	16. 57	13. 00	4. 87	4. 55		_	単相プリッジ_C平滑 リアクトルなし
エレベーター	EV	18. 50	三相	21.8	1	21. 80	3-3	1.8	39. 24	1, 907. 0		25	100. 12	55. 78	40. 05	23. 84	22. 41	15. 26	14. 30	10. 49	三相ブリッジ_C平滑 直流リアクトル
											計算	シート下	表を参	考に手力	人力						
			計算式	の説明																	
			· 5次·	~11次で	抑制対象	策が必要と	≤算定さ	れまし	」た。												
			・何ら	かの対象	をが必要	· ・です。 (か百で	= 6 88)												
			171 12	777 07 79 9	K13 Z. Z		グ兵で	ינקיטעם ٥	,		لم										
備考 各次数高調	波雷流上	退値け次に よ	ろ		等価容	量合計値 <i>P</i>	2°×0° 9*2	[kVA]	98. 6	合	計 [mA	.1	545. 00	310. 47	189. 07	115. 69	101.39	70, 27	61, 60	45, 18	
各次数高調波電			20		7 ()44 (2	限度値			50. 0	各次数高			367. 5	262. 5	168. 0	136. 5			79. 8	73. 5	
=次数毎の高調波	流出電流	 上限値 [mA/kV	w]		高調液	皮流出量によ	こる要否は	判定*1	要	抑制対	策の要否	判定	要	要	要	否	否	否	否	否	
×想定契約電力										3) 機器最大		2.7					流発生量				
1) 高調波発生機 $P_0 = \Sigma (\kappa_i \cdot P)$		容量の算定				の定格電流の					· β · 10	0 の稼働率			j	$I_{n} = I_1 \cdot$	%I _n • α	• γ *2 [[mA]		
$P_0 = \Sigma (\kappa_i \cdot P)$ $P_0 : 等価容$			三村	目の場合:	$I_1 = P_i \cdot$	1,00 √3・受電	ル 電圧[kV]	- [mA]				の稼働率 による補正	率					波電流[
- 0 - 14 imi H 3						1,00				ρ.,	/	1-2 A IUIT	- 1-					発生率 [9			
κ _i : 換算計	奴				/ · — P: •		. []	− LmAJ								144	00 8 1.44	to filed to the			
κ _i : 換算計 P _i : 各機器の		容量 [kVA]					: [kV]									α : 傚	器最大移	(制学			
	の入力定格		I_1 :	受電電圧換	真の定権	各電流 [mA]			列リアクトル付きの	III A) (2	4a - vd								-) v		

	流計算書																				
受電電圧[kV]:	6.6	変圧署		計 [kVA] :	150		定契約電力	[kW]:	105	契約電	力による	補正率β:	1				デンサに直列		有		
		高 調	波	発	生 機		,] 波 沼				量 算 定				
負荷名称	負荷 記号	電動機 容量 [kW]	電気 方式	入力定 格容量 [kVA]	台数	合計入力 定格容量 P _i	回路分 類細分 番号	換算 係数 *1 κ _i	等価容量 P ₀ =P _i ×κ _i [kVA]	受電電圧 算定の定 格電流	インバータ 等の稼 動率	DOMESTIC TO THE PROPERTY OF TH	- V			<i>I</i> _n [1		oow!	o my	ر ملیا ورود ماد
 給水ポンプ	PW-1	2. 20	三相	2. 81	1	[kVA]	3-3	1. 8	5. 058	I ₁ [mA]	κ 0. 3	30	5次 15. 49	7次 8.63	11次 6. 19	13次 3.69	17次 3.47	19次 2.36	23次 2. 2 1	25次 1. 62	高調波
マルチAC室外機	ACP-1	11. 00	三相	13. 1	1	13. 10	3-3	1.8	23. 58	1, 146. 0	0. 55	55	57. 65	33. 18	23. 82	14. 18	13. 32	9. 07	8. 50	6. 24	直流リアクトル 三相ブリッジ 直流リアクトル
パッケージAC	ACP-2	7. 50	三相	9. 07	2	18. 14	3-3	1.8	32. 652	1, 586. 8	0. 55	55	80. 32	45. 90	32. 90	19. 63	18. 45	12. 56	1. 77	8. 64	三相ブリッジュ
パッケージAC	ACP-3	1. 50	単相	1. 95	2	3. 90	4-1	2. 3	8. 97	590. 9	0. 55	55	113. 75	70. 20	16. 57	13. 00	4. 87	4. 55	-	_	単相ブリッジ」
エレベーター	EV	18. 50	三相	21.8	1	21. 80	3-3	1.8	39. 24	1, 907. 0	0. 25	25	100. 12	55. 78	40. 05	23. 84	22. 41	15. 26	14. 30	10. 49	三相ブリッジ直流リアクトル
											計算	シート下	表を参	考に手入	(力						
					-カーに			レターを	を取り付け	た場合を問	い合わ	せて上書	き変更	しました							
				例はメー これはあ 空調機に	ーカーに らくまで ニアクテ	参考例です	す。 ルターを	を取りイ	を取り付け; 対けていま なく通ると	すと申請す											
				例はメー これはあ 空調機に	ーカーに らくまで ニアクテ	参考例です	す。 ルターを	を取りイ	うけていま [・]	すと申請す											
				例はメー これはあ 空調機に	ーカーに らくまで ニアクテ	参考例です	す。 ルターを	を取りイ	うけていま [・]	すと申請す											
備考 各次数高調	別波電流上	限値は次によ		例はメー これはあ 空調機に	-カーに うくまで - アクテ いません	参考例です	す。 ルター き 社申請も	を取り付き問題が	うけていま [・]	すと申請す 思います。		ここまで		書提出は		74. 34	62. 52	43. 80	26. 78	26. 99	
各次数高調波電	這流上限値	[mA]	· • 5.	例はメー これはあ 空調機に	-カーに らくまで -アクテ ルません 等価容	参考例でで ィブフィイ 。電力会れ 量合計値 <i>P</i> 限度 値	す。 ルターを 社申請も P ₀ ×0.9*2 [kVA]	を取りた 問題が [kVA]	付けていま なく通ると 98.6 50.0	すと申請す 思います。 合 各次数高	れば、 計 [mA	ここまで 	の計算事 367.33 367.5	書提出は 213.69 262.5	119. 53 168. 0	136. 5	105. 0	94. 5	79. 8	73. 5	
各次数高調波電 =次数毎の高調波	意流上限値	[mA]	· • 5.	例はメー これはあ 空調機に	-カーに らくまで -アクテ ルません 等価容	参考例でで ィブフィル 。電力会れ 量合計値 <i>P</i>	す。 ルターを 社申請も P ₀ ×0.9*2 [kVA]	を取りた 問題が [kVA]	寸けていま なく通ると 98.6 50.0 要	すと申請す 思います。 合 各次数高 抑制対	れば、 計 [mA 開波上限 策の要否	ここまで 	の計算者 367.33	書提出は	119.53 168.0 否	136.5 否	105.0 否	94.5 否			
各次数高調波電 = 次数毎の高調波 ×想定契約電力	i流上限値 i流出電流 i [kW]	[mA] 上限値 [mA/kV	٠ ٠ ٥.	例はメーこれはあっています。	-カーに らくまで -アクテ よません 等価容 高調源	参考例でで イブフィイ 。電力会社 量合計値 P 限度 値 技流出量によ	す。 ルターで 社申請も '' ₀ ×0.9 ^{*2} [kVA]	を取りた 問題が [kVA]	寸けていま なく通ると 98.6 50.0 要	すと申請す 思います。 合 各次数高 抑制対 3)機器最2	れば、 計 [mA 開波上限 策の要否 大稼働率	ここまで 」 」 値 [mA] 下判定 の算定	の計算事 367.33 367.5	書提出は 213.69 262.5	119.53 168.0 否 4)	136.5 否 高調波電	105.0 否	94.5 否 の算出	79.8 否	73. 5	
各次数高調波電 = 次数毎の高調波 ×想定契約電力	意流上限値 を流出電流 J [kW] 後器の等価	[mA] 上限値 [mA/kV	٠ ٠ ٥.	例はメー これはあ 空調機に 要求され	- カーに - カーに - アクテ - ません 等価容 高調源	参考例でで イブフィイ。 電力会社 量合計値 P 限 度 値 技流出量によ の定格電流の	す。 ルターで 社申請も パ ₀ ×0.9 ⁴² [kVA] よる要否す	を取り イ 5問題 が [kVA]	寸けていま なく通ると 98.6 50.0 要	すと申請す 思います。 合 各次数高 抑制対 3) 機器最ス α=κ	れば、 計 [mA 開波上限 策の要で 大稼働率・ ・ β・10	ここまで 」 」 値 [mA] 下判定 の算定	の計算事 367.33 367.5	書提出は 213.69 262.5	119.53 168.0 否 4)	136.5 否 高調波電	105.0 否	94.5 否 の算出	79.8 否	73. 5	
各次数高調波電 = 次数毎の高調波 × 想定契約電力 1) 高調波発生機 $P_0 = \sum (\kappa_i \cdot P_i)$ P_0 : 等価容	意流上限値 を流出電流 J [kW] 後器の等価 A) [kVA] 量 [kVA]	[mA] 上限値 [mA/kV	・ ・ る。 v]	例はメー これはあ 空調機に 変求され 2) 受電	- カーに - カーに - アクテ - ません 等価容 高調 電圧換算。 $I_1 = P_i$ ・	参考例でで イブフィイ。 ・ でまれた。 ・ 電力会れ ・ 単位 ・ では、 は ・ では、 は ・ では、 1,00 ・ ででもでいる。 ・ ででは、 1,00 ・ ででは、 1,00	す。 ルターを 社申請も アッ×0.9 ^{*2} [kVA] よる要否的 のの 電圧[kV]	を取り付き問題な [kVA] 印定*1	寸けていま なく通ると 98.6 50.0 要	すと申請す 思います。 合 各次数高 抑制対 3)機器最ス α=κ κ: (4	れば、 計 [mA 開波上限 策の要さ 大稼働率・ 6・10 アンバーケ等	ここまで 	の計算 ¹ 367.33 367.5 否	書提出は 213.69 262.5	119.53 168.0 否 4)	136.5 否 高調波電 $I_n = I_1 \cdot -$ I_n : 各	105.0 否 流発生量 %I _n ·α 10,000 次数高調》	94.5 否 の算出 ・γ n*2 [技電流 [1	79.8 否 [mA] mA]	73. 5	
=次数毎の高調波 ×想定契約電力 1) 高調波発生機 $P_0 = \Sigma (\kappa_1 \cdot P_1)$	i流上限値 i流出電流 j [kW] g器の等価 c}, [kVA] 量 [kVA]	:[mA] :上限値 [mA/kV 容量の算定	・ る。 V] 三村 単村	例はメー これはあ 空調機にされ 2) 受電 10場合:	- カーに - カーに - アクテ - ません 等価容 高調 - - - - - - - - - -	参考例でで イブフィイ。 電力会社 量合計値 P 限 度 値 技流出量によ の定格電流の	す。 ルターを 社申請も アッ×0.9 ^{*2} [kVA] よる要否的 のの 電圧[kV]	を取り付き問題な [kVA] 印定*1	寸けていま なく通ると 98.6 50.0 要	すと申請す 思います。 合 各次数高 抑制対 3)機器最ス α=κ κ: (4	れば、 計 [mA 開波上限 策の要さ 大稼働率・ 6・10 アンバーケ等	ここまで 面 [mA] 所判定 の算定 の の の の の の の の の の の の の	の計算 ¹ 367.33 367.5 否	書提出は 213.69 262.5	119.53 168.0 否 4)	136.5 否 高調波電 n=I ₁ ·- I _n :各 %I _n :高	105.0 否 流発生量 %I _n ・α 10,000	94.5 否 の算出 ・γ n ^{*2} [支電流 [i き生率 [9	79.8 否 [mA] mA]	73. 5	

表 2-11 インバータの定格容量

電動機容量〔kW〕	入力定格容量 Pi[kVA]
0.2	0. 35
0.4	0. 57
0.75	0. 97
1.5	1.95
2.2	2.81
3.7	4.61
5.5	6. 77
7.5	9. 07
11	13. 1
15	17. 6
18. 5	21.8
22	25. 9
30	34. 7
37	42.8
45	52. 1
55	63. 7

備考 JEM-TR201「特定需要家における汎用イン バータの高調波電流計算方法」より抜粋

参考資料 (設計基準より抜粋)

表 2-12 契約電力 1kW 当たりの高調波流出電流上限値

受電電圧		ì	欠数毎の	高調波流	出電流上	限値〔mA	/kW]	
(kV)	5 次	7次	11 次	13 次	17 次	19 次	23 次	23 次超過
6.6	3.5	2.5	1.6	1.3	1.0	0.9	0.76	0. 70

表 2-13 想定契約電力算出係数

最初の 50kW につき	80%
次の 50kW につき	70%
次の 200kW につき	60%
次の 300kW につき	50%
600kW を超える部分につき	40%

備考 ・受変電設備の総容量については、1VAを1Wと見なす。

・想定契約電力は電気事業者との協議によりますが、不明な場合は 上表を参考とします。

電路計算書

昔の電圧降下の計算から幹線計算書、そして平成 18 年版迄は電灯幹線計算書、動力幹線計算書と各々別シートになっておりました。平成 21 年版から電路計算書(幹線用)と(分岐配線用)と計算書そのものが 2 つに分かれました。平成 27 年版の計算書作成の手引は平成 21 年版とほとんど変わっておりませんが、計算書様式の中でケーブルラックの低減率を入れる欄が出来ました。また設計基準平成 27 年版からは EM-FP-C ケーブルの許容電流値が紹介されたのと WF ケーブル、IV 電線が消却されました。しかし現在でも WF、IV は多用されておりますので平成 21 年版のデータを入れております。

e c o 労師発売以来 15 年になりますが、その間お問合せについて無料サポートをしてきましたが、問合せはこの電路計算がほとんどで 80%超です。考えてみますと照度計算、高調波、テレビ、電話、太陽光、発電機は正直メーカーに依頼すれば対応してくれますが幹線、力率、短絡電流、変圧器の選定はやってくれませんので当然です。これ迄の質問を総合してみて、より解り易い入力例ガイドブック作りに努めました。各々計算書シートで説明しておりますが幹線計算で特に重要な点について 4 項目記しておきます。

- 1、設計基準に記載されている文章を参考にしますと電灯幹線の保護は<u>過負荷及び短絡の保護</u>を行う。動力幹線の保護は<u>短絡保護</u>を行うとあります。つまり電灯主幹ブレーカーは過負荷(過電流)の保護を行うため電線ケーブルは主幹ブレーカーより大きな許容電流をもった電線を布設するということであり、単純にして簡単です。
- 2、動力幹線は短絡のみです(但し、分岐回路は過負荷及び短絡の保護です)ので過電流とは書いておりません。盤の頭は端子でも良いのです。 内線規程で要約しますと幹線の太さは電動機の定格電流の合計が50A以下の場合はその定格電流の1.25 倍、50Aを超える場合は1.1 倍と規定 されております。合計とありますが単独でも同じです。そして電動機に供給する分岐回路の電線は過電流遮断器の定格の40%以上の許容電流 のあるものとされています。逆に考えると定格電流が45Aであったとすると電灯ブレーカーは50Aとしますが動力は45A×1.25 倍=57A以上 の電線を布設すればブレーカーは125Aでも構わないということです。
- 3、ケーブルラックは多数のケーブルがふ設されます。何列ふ設するかは計算シートの下にある表を参考に低減率を算出します。
- 4、EM-IE、HIV の許容電流は同じですが設計基準にある電流値は<u>周囲温度 40℃です。内線規程は 30℃ですので</u>承知しておいて下さい。また IV は IE より、VVF は EEF より許容電流は相当小さくなります。内線規程の IV と設計基準の IE は余り変わらないと考えるのは大間違いです。内線 規程は周囲温度 30℃であることを念頭において下さい。
- 5、次ページより入力例で説明していきますが、様式はH27年版を改良しています。H27年版様式が最も使い易い様式です。H30年版、R3年版 R6年版も少し様式を変更していますが使いにくいです。H27年版様式でもデータは令和6年版を採用していますので安心して下さい。

電路計算書(幹線用)電灯回路の説明-1

- ・建物名称と日付は表紙に入力することで連動して自動入力されます。
- 1、周波数の選択は必須です。周波数によってリアクタンスが変わります(抵抗は一定)のでインピーダンスも少し変化します。
- 2、電気方式、電圧はリスト選択します。幹線番号、負荷名称は手入力します。入力しなくても計算式には関係しません。
- 3、ブレーカー容量、こう長は手入力です。系統の横線は入れなくても計算式には関係しません。
- 4、設計負荷電流は手入力です。例えば計算する電灯盤の負荷容量が 16kVA あるとして平衡がとれていれば 200V で割算すると 80A となります。 設計基準では左相と中性線、右相と中性線は平衡していないため大きい方の電流値を採用することになりますが一般的には負荷容量を 200 で割算してもよろしいかと考えます。
- 5、負荷の力率は右のドロップダウンリストより電灯・コンセントを選択します。自動的に 0.95 と入力されます。0.95 の根拠は設計基準です。 続いて許容電圧降下値を手入力しておいて下さい。(表 2-8 参照。)
- 6、次に配線方式をリストより選択し、配線種別を選んでサイズを選択します。入力例で 22mm²を選択しますと許容電流と電圧降下に<mark>赤</mark>数値が出ます。これは不可ですとの意味です。
- 7、許容電圧降下を 3V とすると 2.56V が黒に変わりますが許容電流は 92V と赤のままです。これは電灯回路はブレーカーの容量以上の許容電流 としなければならないからです。
- 8、次に計算式を正解とするために $22mm^2$ を $38mm^2$ にワンサイズアップしますと全て黒数値に変わります。 $38mm^2$ を選択するのが正解です。
- 9、CET (CVT) を選択したのに数値が違うという質問がありますが中性線は本数に算入しませんので CED (CVD) の許容電流値が入力されます。

	双 2 0 电压	年 1	
	> 5 E	電圧	降下
	こう長	幹線	分 岐
	60m以下	2%以下	2%以下
一般供給の場合	120m以下	4%	以下
	200m以下	5%	以下
	60m以下	3%以下	2%以下
変電設備のある場合	120m以下	5%	以下
	200m以下	6%	以下

表 2-8 電圧降下

ワンポイントアドバイス

1、電線及びケーブルの許容電流値はブレーカー容量より大きくなければいけません。

(様式 電-8-1)

電路計算書	書 (幹線用)			3	建物名称	ECO労師ビ	ル新築工	<u> </u>								年月日					
周	波数 [Hz]:	60																			
幹線番号 又は名称	電気方式	電圧	幹線保 護用遮 断器定 格電流	系統	こう長	負荷名称	主幹器具定格電流	設計負荷 電流	負荷の 力率	種別及び 断面積	電線及U 配線方式	ケーブル ケーブル ラックの 場合の	許容電流	電線1kmあ たりのイン ピーダンス	各線間の e 単一配線 の		備考	ト・ロップ・ダ・ウンリスト 負荷の種類 絶縁電線の場合	より選択 地中管路の 埋設深さ 地中管路の	絶縁電線の 場合の周囲 温度(入力 無しの場合	低減率
		[V]	[A]		ℓ [m]		[A]	I [A]	cos θ	$A \text{ [mm}^2]$		低減率	[A]	$Z [\Omega/km]$	電圧降下	合計 [V]		の本数	管路数	(140°C)	
L-N-1	単相3線	100/200	100		30.0	L-1-1	100	80.0	0. 95	EM-CET 22	保護管配線		92. 0	1. 065	2. 56	2. 0		電灯・コンセント			1. 00
L-N-1	単相3線	100/200	100		30.0	L-1-1	100	80. 0	0. 95	EM-CET 22	保護管配線		92. 0	1. 065	2. 56	3. 0		電灯・コンセント			1. 00
L-N-2	単相3線	100/200	100		30. 0	L-1-1	100	80. 0	0. 95	EM-CET 38	保護管配線		125. 0	0. 632	1. 52	2. 0		電灯・コンセント			1. 00
										30								ケーブルの場	合は選択必	要ありまっ	せん
						• 周波数 <i>0</i> .	選択は必	須です!				-									
						周波数に	よってイ	ンピーダン	ノスは変わ	わります。											
												,									
	る電線太さの = <u>K'IVZ</u> 1,000 る場合は中性	- [V]		K': I: Q:	電気方式(設計負荷) こう長 [m		νλ [Ω/km]		回路 単相2線式 三相3線式		よる係数 係数 2 √3	- - - -									

電路計算書(幹線用)電灯回路の説明-2

- ・絶縁雷線を配管内に入線した場合を説明します。(幹線番号、系統横線、負荷名称は省略しています。)
- 1、EM-IE も HIV の許容電流は同じです(設計基準参照)。周波数の選択は必須です。
- 2、注意すべき点は設計基準の許容電流値は周囲温度 40° の場合です。内線規程は周囲温度 30° の値ですので同じではありません。どうしても 状況から判断して 30° で良いとなれば入力例の右側欄に 30° と入力して下さい。 40° 以上(例 50°)の場合も同様です。
- 3、上段から説明しますと IE22mm²を選択すると許容電流、電圧降下共に<mark>赤</mark>数値となり、22mm²では不可となります。
- 4、次に38mm²にするとOKです。説明用として区別していますが22mm²でダメであれば22mm²のところで再度38mm²を選択し直して下さい。
- 5、下段は同じ38mm²でも周囲温度30℃、50℃にしてみると許容電流値が変わることが理解できます。この数値は設計基準補正係数の式を参考としています。
- 6、設計基準 H27 年版から IV 電線が消去されています。民間物件では IV 電線も多く用いられているため、IV も選択できるようにしています。 これも周囲温度 40℃の場合で電流値は H21 年版の補正係数の式より求めています。

ワンポイントアドバイス

- 1、EM-IEとHIVの許容電流は同じです。
- 2、このソフトで自動入力される許容電流値は周囲温度 40℃の場合です。
- 3、中性線と接地線は本数に算入しません。例えば $IE22^{\square} \times 3$ 、 $E5.5^{\square}$ (31) の場合でも右ドロップダウンリストの 3 本以下を選択して下さい。

(様式 電-8-1)

電路計算書	(幹線用)			3	建物名称_	ECO労師ビ	ル新築工事	<u> </u>								年 月 日					
周	波数 [Hz]:	60																			
幹線番号 又は名称	電気方式	電圧 [V]	幹線保 護用遮 断器定 格電流 [A]	系統	こう長 @ [m]	負荷名称	主幹器具 定格電流 [A]	設計負荷 電流 <i>I</i> [A]	負荷の 力率 cos θ	種別及び 断面積 A [mm ²]	電線及び配線方式	ケーブル ケーブ ル ラックの 場合の 低減率	許容 電流 [A]	電線1kmあ たりのイン ピーダンス Z[Ω/km]	各線間の e 単一配線 の 電圧降下	電圧降下 [V] 許容電 分岐があ 圧降下 る場合の 合計 [V]	備考		地中管路の 埋設深さ 地中管路の	温度(入力	低減率
	単相3線	100/200	100		30. 0		100	80.0	0. 95	EM-IE 22	保護管配線		86. 0	0. 986	2. 37	2. 0		電灯・コンセント 3本以下			1. 00
	単相3線	100/200	100		30. 0		100	80.0	0. 95	EM-IE 38	保護管配線		122. 0	0. 598	1. 44	2.0		電灯・コンセント 3本以下			1. 00
	単相3線	100/200	100		30. 0		100	80.0	0. 95	EM-IE 38	保護管配線		122. 0	0. 598	1. 44	2.0		電灯・コンセント 3本以下			1.00
	単相3線	100/200	100		30. 0		100	80. 0	0. 95	EM-IE 38	保護管配線		122. 0	0. 598	1. 44	2. 0		電灯・コンセント 3本以下			1. 00
																		IE, IVO	場合は選択	して下さ	LV.
電圧降下による	る電線太さの	算出		ここに、e:	各線間の電	電圧降下 [V]	1	<u> </u>		K':電気方式に	よる係数										
					電気方式に					の電気方式	係数	-									
e=	1, 000	- [V]			設計負荷電				単相2線元		2	-									
	1,000 る場合は中f		王降下		こう長 [m 電線1kmあ] たりのインピーダ:	/ス [Ω/km]		三相3線式単相3線式	た た、三相4線式	√3 1	-									

電路計算書(幹線用)電灯回路の説明-3

- ・分岐のある場合の計算式について説明します。
- 1、周波数の選択は必須です。前頁では 60Hz でしたが 50Hz にして計算します。 前頁 IE-38mm²のインピーダンスは 0.598 でしたが 50Hz では 0.592 と少し小さな値となっています。
- 2、上段の分岐は各々設計電流 39A、ブレーカー40A と同じであるため 8mm²を選択してみました。 L-2-2 の幹線の電流値 46A が<mark>赤</mark>数値となっています。これは分岐配線は 8mを超えるため主幹ブレーカーの 55%以上、つまり 55A 以上の許容電流のある電線であることが満足できていないためです。また電圧降下も 3%以内を目標としているのにオーバーしています。
- 3、L-2-2 の分岐幹線を 14mm²にサイズアップすると許容電流、電圧降下共にOKとなります。
- 4、合計値、備考欄は手入力です。

ワンポイントアドバイス

幹線より分岐された細い幹線の許容電流値

3m <l≦8mの場合< th=""><th>幹線保護用遮断器定格電流の 35%以上</th></l≦8mの場合<>	幹線保護用遮断器定格電流の 35%以上
L>8mの場合	幹線保護用遮断器定格電流の 55%以上

(様式 電-8-1)

周海	皮数 [Hz]:	50																
,,,,,,			幹線保								電線及び	ケーブル			各線間の	電圧降下		1
幹線番号 又は名称	電気方式	電圧	護用遮 断器定 格電流	系統	こう長	負荷名称	主幹器具 定格電流	設計負荷 電流	負荷の 力率	種別及び 断面積	配線方式	ケーブ・ル ラックの 場合の	許容 電流	電線1kmあ たりのイン ピーダンス	е		許容電 圧降下	備考 維約
		[V]	[A]		0 [m]		[A]	I [A]	$\cos \theta$	A [mm 2]		低減率	[A]	$Z [\Omega/km]$			[V]	n-Cans
-2分岐例	単相3線	100/200	100	<u> </u>	30. 0			78. 0	0. 95	EM-IE 38	保護管配線		122. 0	0. 592	1. 39		3. 0	電
	単相3線	100/200			5. 0	L-2-1	40	39. 0	0. 95	EM-IE	保護管配線		46. 0	2. 702	0. 53	1. 92	3. 0	OK T
	単相3線	100/200			20.0	L-2-2	60	39. 0	0. 95	8 EM-IE	保護管配線		46. 0	2. 702	2. 11	3. 50	3. 0	NG 電
	丰和34%	100/200			20.0	LZZ	00	39.0	0.90	8	不設 日 日 中水		40. 0	2. 702	2.11	3. 30	3.0	Nu
										EM-IE								電
支例の正解	単相3線	100/200	100		30. 0			78. 0	0. 95	38	保護管配線		122. 0	0. 592	1. 39		3. 0	
	単相3線	100/200			5. 0	L-2-1	40	39. 0	0. 95	EM-IE 8	保護管配線		46. 0	2. 702	0. 53	1. 92	3. 0	OK T
	単相3線	100/200			20. 0	L-2-2	60	39. 0	0. 95	EM-IE 14	保護管配線		66. 0	1. 531	1. 20	2. 59	3. 0	OK T
E降下による	電線太さの	算出				電圧降下 [V]	1			K':電気方式に		_						
	K' 717				電気方式は設計負荷電	こよる係数 転流「Al			回路 単相2線元	の電気方式	係数 2	_						
e=	1, 000	[V]			政計員何! こう長 [n				三相3線元		√3	_						

「ロップ が ウンリスト b) 選択	
負荷の種類 地中官路切 場合の周囲 埋設深さ 連段 (入力 低減率	
の本数 管路数 は40℃)	Z.
の本数 管路数	
雷化・ツかん	
電灯・コパル 1,00	
3本以下	
電灯・コンセント 1.00	
3本以下 1.00	
電灯・コンセント 1.00 1.00	
3年以下	_
電灯・コンセント	
3本以下 1.00	
電灯・コンセント 1,00	
3本以下	
電灯・コンセント 1.00 3本以下	
3年以下	_

電路計算書(幹線用)電灯回路の説明-4

・地中埋設について説明します。

- 1、こう長が 70m(60m以上)あるため、とりあえず許容電圧降下を 4%(4V)として計算します。
- 2、上の2段に許容電流値が入らないのは右の管路数が選択されていないためです。管路数の選択入力は必須です。
- 3、中の3段は地中管路の埋設深さを300、600、1,200と3種類を計算しました。許容電流値が各々異なります。 設計基準の構内線路を採用しています。参考迄に300の場合の基礎温度は32℃、600の場合は25℃です。 1,200の場合は600に比較して5%程度減少すると記されております。
- 4、下段に#VALUE!が出ています。これは地中管路に EM-IE (絶縁電線) を選択したためです。地中埋設はケーブル配線です。

ワンポイントアドバイス

- 1、地中管路に入線するのは CE(CV) ケーブル、CET (CVT) ケーブルです。 IE (IV) は不可です。
- 2、埋設深さは深い程、許容電流値がアップするものではありません。GL-1,200 は-600 に比べて 5%減少します。

(様式 電-8-1)

居]波数 [Hz]:	50																
幹線番号 又は名称	電気方式	電圧	幹線保 護用遮 断器定 格電流	系統	こう長	負荷名称	主幹器具定格電流	設計負荷電流	負荷の 力率	種別及び 断面積	電線及び 配線方式	ケーブル ケーブル ラックの 場合の	許容電流	電線1kmあ たりのイン ピーダンス	е	電圧降下 [V] 分岐があ る場合の	許容電圧降下	備考
		[V]	[A]		0 [m]		[A]	I [A]	cos θ	$A [mm^2]$		低減率	[A]	Z [Ω/km]	電圧降下	合計	[V]	
	単相3線	100/200	100		70. 0		100	90. 0	0. 95	EM-CET 38	地中保護管配線			0. 625	3. 94		4. 0	
	単相3線	100/200	100		70. 0		100	90. 0	0. 95	EM-CET 38	地中保護管配線			0. 625	3. 94		4. 0	
													管路排	変表択して下	さい。			
	単相3線	100/200	100		70. 0		100	90. 0	0. 95	EM-CET 38	地中保護管配線		120. 0	0. 625	3. 94		4. 0	
	単相3線	100/200	100		70. 0		100	90. 0	0. 95	EM-CET 38	地中保護管配線		135. 0	0. 625	3. 94		4. 0	
	単相3線	100/200	100		70. 0		100	90. 0	0. 95	EM-CET 38	地中保護管配線		128. 2	0. 625	3. 94		4. 0	
										30								
	単相3線	100/200	100		70. 0		100	90.0	0. 95	EM-IE 38	地中保護管配線			0. 592	3. 73		4. 0	
										1			1					
													地中旬	路はケーブ	レです。			
圧降下によ	る電線太さの	算出			各線間の電気方式に	電圧降下 [V]				K':電気方式に の電気方式	よる係数係数	=						
	K' 117				電気方式(設計負荷電				単相2線式		1米数	_						
e=	$= \frac{K' I I Z}{1,000}$	[V]			こう長 [m				三相3線式		√3	-						

ト゛ロップ・ダ・ウンリスト 負荷の種類	より選択 地中管路の 埋設深さ	絶縁電線の場合の周囲	ier tub -t-
絶縁電線の場合 の本数	地中管路の管路数	温度(入力 無しの場合 は40℃)	低減率
電灯・コンセント	D=300		1. 00
電灯・コンセント	D=600		1. 00
電灯・コンセント	D=300 2管		1. 00
電灯・コンセント	D=600 2管		1. 00
電灯・コンセント	D=1, 200 2管		0. 95
電灯・コンセント 3本以下	D=600 2管		1. 00

ケーブルラック許容電流計算書の説明

・動力回路について説明します。

- 1、ここでは説明用として動力のみ入力していますが、電灯も一緒に計算できます。
- 2、電灯回路の考え方はブレーカーの定格電流以上の許容電流のあるケーブルを選定する必要があると説明しました。 動力は少し考え方が異なります。
- 3、内線規程で「電動機に供給する幹線の太さはその幹線に接続する電動機の定格電流が 50A以下の場合は、その定格電流の 1.25 倍、50Aを超える場合は 1.1 倍とする。」と規定されています。この文言が令和 3 年度設計基準 P81 に初めて明記されました。これまでの様式では最大電流(規約電流)しかなかったのがガイドブック P8~P10 に追加していますので参考にして下さい。
- 4、最上段の P-N-1 の回路で説明しますと設計電流 35A は 28A に 1.25 倍した値です。35A÷低減率 0.7=50.1 と入ります。 EM-CE を選定すると 8mm² が自動入力されます。8mm² の許容電流は 54A ですので低減率 0.7 を掛算すると 37.8A となります。 P-N-5 の回路で説明しますと設計負荷電流が 100A なので 100A÷低減率 0.7=142.85 ∴142.9 と入ります。 EM-CET を選定すると 38mm² が自動入力されます。38mm² の許容電流は 155A ですので低減率 0.7 を掛算すると 108.5A となります。
- 5、下段は P-N-1 と P-N-5 を検証してみたものです。経験豊富な人は設計電流 35A であれば $5.5 \, \mathrm{mm}^2 \sim 8 \, \mathrm{mm}^2$ 、 $100 \, \mathrm{A}$ であれば $38 \, \mathrm{mm}^2$ で十分と考えると 推測しますがケーブルの段数、列数による低減率によって結果は内線規程を満足できるとは限りません。自動で選定されるケーブルサイズが 正解です。

ワンポイントアドバイス

- 1、ケーブルの段数、ケーブルの列数は手入力して低減率を求めます。
- 2、このシートはあくまで許容電流とラック幅を求めるもので幹線のケーブルサイズが確定したものではありません。
- 3、電路計算書で周波数を選定し、こう長を入力します。こう長が長い場合は電流は問題ありませんが、電圧降下に<mark>赤数値</mark>が出る時もあります。 その場合はケーブルサイズをアップして確認して下さい。

ケー	ーブルラック許	F容電流計算	書(ケー)	ブルラック配線)		建物名称		<u></u> 設	計負荷電流より大	さければOI	くです。	年 月	且
\	幹線番号 又は名称	電気方式	電圧	負荷名称	配線保護 用遮断器 定格電流	主幹器具定格電流	設計負 荷電流	ケーブル選定 上必要な 許容電流	種別及び 断面積	ケーブル 許容 電流	低減率を考慮 した許容電流	ケーブルラッ ケーブルの仕 上がり外径	ク D + 10
	> V [4.17	-2303774	[V]	NM-E B	[A]	[A]	<i>I</i> [A]	[A]	$A \text{ [mm}^2]$	[A]	[A]	D [mm]	[mm]
	P-N-1	三相3線	200	P-1	50	50	35. 0	50. 1	EM-CE 8-3c	54	37. 8	16. 0	26. 0
	P-N-2	三相3線	200	P-2	50	50	42. 0	60. 1	EM-CE 14-3c	76	53. 2	17. 5	27. 5
	P-N-3	三相3線	200	P-3	75	75	60. 0	85. 8	EM-CET 14	86	60. 2	21. 0	31.0
	P-N-4	三相3線	200	P-4	100	100	92. 0	131.5	EM-CET 38	155	108. 5	28. 0	38. 0
	P-N-5	三相3線	200	P-5	125	125	100. 0	142. 9	EM-CET 38	155	108. 5	28. 0	38. 0
	P-N-6	三相3線	200	P-6	150	150	125. 0	178. 6	EM-CET 60	210	147. 0	33. 0	43.0
	P-N-7	三相3線	200	P-7	200	200	175. 0	250. 1	EM-CET 100	290	203. 0	41. 0	51.0
				最大電流(規	約電流)に50AJ	以下は1.25倍	1						
				50Aを超えるも 入力します。	のについては	1.1倍を乗じた	値を						
				人刀します。									
				計算式の説明 ・動力用で説明 便宜上、動力				々に算定する必	必要はありませ	<i>6</i> .			
	許容電	流低減率の算	定	<u> </u>		ケーブルラ: 2	 ク配線の許容電流の	D低減率η ₀		備考 (1) JCS 0168-2 ブルの許容電流	「33kV以下電力ケー 計算-第2部:低圧ゴ	ケーブルの仕上がり外径 合計 Σ(D+10)	254. 5
	ケーブルの段	数(m) 入力	1	配 列 列 n 1 2 3	6 5 2 3	4 5 6	8 3 4		9 11 13 16 5 5 5 20		ルの許容電流」及び kV以下電力ケーブルの	ケーブ ルラックの必要寸法 1.2 { Σ (D+10)+60}	377
					0.0		20		0 12 15 19	並宏看添計管	第3部:高圧架橋ポ		
-	ケーフ゛ルの列	数(n) 入力	7	S=D 1 0.85 0.	80 0.70 0.70 0.70 0.60	0 0.60 0.56 0.53 0.		1 0.37 0.34 0.32 0.31 0.		リゴルの許容電流		選定するケーブ・ルラック	400

電路計算書(幹線用)動力回路の説明

- ・前ページで求めたケーブルサイズで電路計算シートにて計算して説明します。
- 1、P-N-1 幹線にこう長 20mを入力すると電圧降下は 1.92V と算定され、4.0V (2%以内) 以下でOKです。50mと距離を長くすると 4.78V と赤で表示され、オーバーしています。このような場合はワンランクアップの 22mm²でやり直してください。CE22mm²の許容電流は 70A と表示されていますが CET の場合は 77A と大きな値となります。これは CE22mm²の 1 条ふ設が 100A に 0.7 の低減率が掛かっています。CET の場合は 110A に 0.7 で 77A になります。CET (CVT) は CE (CV) ケーブルより許容電流値は大きいです。
- 2、中段 P-N-5 は電動機コンデンサ有と無を比較しています。力率が良いほど電圧降下が大きいことが理解できます。 インピーダンスが大きくなるからです。
- 3、下段は 3ϕ 、 1ϕ で比較してみました。同じ CET38mm² であるのに許容電流値が異なります。 1ϕ の場合は中性線の電線は本数に算入しないため CED (ダブル=2C) の電流値が入力されます。

ワンポイントアドバイス

- 1、コンデンサ有と無の力率は設計基準を参考にしていますが、力率はこれに限らず任意に変更できます。同じくこの計算式に基づいたソフトと していますのでどのようにでも変更可能です。
- 2、電線のインピーダンスは周波数によって変わりますので、最上段左の周波数選択は必須です。

(様式 電-8-1)

電路計算書				<u> </u>	∓ 1×3.×14.1/1,	ECO労師ビル教	ハネーチ									— 年		
周	波数 [Hz]:	50	幹線保								電線及び	ケーブル			久線問の	電圧降下		
幹線番号 又は名称	電気方式	電圧	護用遮 断器定 格電流	系統	こう長	負荷名称	主幹器具 定格電流	設計負荷 電流	負荷の 力率	種別及び 断面積	配線方式	ケーブル ラックの 場合の	許容電流	電線1kmあ たりのイン ピーダンス	е	[V] 分岐があ る場合の	許容電 圧降下	備考
		[V]	[A]		0 [m]		[A]	I [A]	cos θ	$A \text{ [mm}^2]$		低減率	[A]	$Z [\Omega/km]$	電圧降下	合計	[V]	
-N−1	三相3線	200	50		20. 0	P-1		35. 0	0. 90	EM-CE 14-3c	ケーフ・ルラック配線	0. 70	53. 2	1. 576	1. 92		4. 0	
-N−1	三相3線	200	50		50. 0	P-1		35. 0	0. 90	EM-CE 14-3c	ケーフ゛ルラック配線	0. 70	53. 2	1. 576	4. 78		4. 0	
-N−1	三相3線	200	50		50. 0	P-1		35. 0	0. 90	EM-CE 22-3c	ケーフ゛ルラック配線	0. 70	70. 0	1. 009	3. 06		4. 0	
P-N-5	三相3線	200	125		20. 0	P-5		100. 0	0, 90	EM-CET	ケーフ゛ルラック配線	0, 70	147. 0	0. 398	1. 38		4. 0	
P-N-5	三相3線	200	125		20. 0	P-5		100.0	0.80	60 EM-CET 60	ケーフ゛ルラック配線	0. 70	147. 0	0. 373	1. 30		4. 0	
										- 00								
										EM-CET								
P-N-4	三相3線	200	100		20. 0			92. 0	0. 90	38 EM-CET	ケーフ・ルラック配線	0. 70	108. 5	0. 606	1. 94		4. 0	
-N-4	単相3線	100/200	100		20. 0	L-4		92. 0	0. 95	38	ケーフ゛ルラック配線	0. 70	115. 5	0. 625	1. 15		4. 0	
														ーブルでも の許容電流が				
直圧降下による	る電線太さの	算出		ここに、e: K':		重圧降下 [V] こよる係数		l		K':電気方式に の電気方式	よる係数	=						
e=	= K' IIZ 1,000	- [V]		I:	設計負荷電	直流 [A]			単相2線式	Ì	2 √3	- -						
	1,000 る場合は中性		工際下		こう長 [m 電線1km あ	」 たりのインピーダ:	77 [O /km]		三相3線式	C、三相4線式	√ 3 1	=						

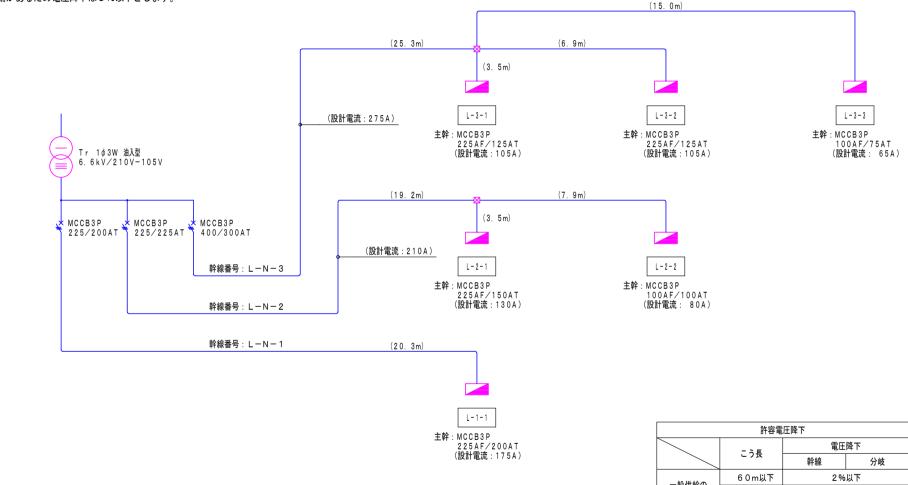
ト゛ロッフ゜タ゛ウンリスト.	より選択	絶縁電線の	
負荷の種類	地中管路の 埋設深さ	総報電線の 場合の周囲 温度(入力	低減率
絶縁電線の場合	地中管路の	無しの場合	
の本数	管路数	は40℃)	
電動機(コンデンサ有)			1. 00
電動機(コンデンサ有)			1. 00
電動機(コンデンサ有)			1. 00
電動機(コンデンサ有)			1. 00
電動機(コンデンサ無)			1. 00
電動機(コンデンサ有)			1. 00
電灯・コンセント			1. 00

ケーブルラック許容電流計算書 (ケーブルラック配線) 配線保護								ル新築工事			<u>年月日</u>		
	幹線番号 又は名称	電気方式	電圧	負荷名称	配線保護 用遮断器 定格電流	主幹器具 定格電流	設計負 荷電流	ケーブル選定 上必要な 許容電流	種別及び 断面積	ケーブル 許容 電流	低減率を考慮 した許容電流	ケーブルラッ ケーブルの仕 上がり外径	D + 10
			[V]		[A]	[A]	I [A]	[A]	A [mm 2]	[A]	[A]	D [mm]	[mm]
	L-N-1	単相3線	100/200	L-1	30	30	25. 2	42. 9	EM-CE 5. 5-3c	52	36. 4	14. 5	24. 5
	L-N-2	単相3線	100/200	L-2	50	50	40. 6	71.5	EM-CE 14-3c	91	63. 7	17. 5	27. 5
	L-N-3	単相3線	100/200	L-3	75	75	62. 4	107. 2	EM-CE 22-3c	120	84. 0	21. 0	31.0
	L-N-4	単相3線	100/200	L-4	100	100	81. 6	142. 9	EM-CET 38	165	115. 5	28. 0	38. 0
	L-N-5	単相3線	100/200	L-5	125	125	112. 5	178. 6	EM-CET 60	225	157. 5	33. 0	43. 0
	L-N-6	単相3線	100/200	L-6	150	150	130. 8	214. 3	EM-CET 60	225	157. 5	33. 0	43. 0
	L-N-7	単相3線	100/200	L-7	200	200	178. 3	285. 8	EM-CET 100	310	217. 0	41. 0	51.0
		• Ē	上段で説	ブレーカーの定 明しますとブレ 2.9A以上の許容	ーカ <i>ー</i> が30A	ですが低減	率が0.7で	すので理論上				ト ・電灯の場合低減率を考別 許容電流が主幹定格電池 ・大きければ○Kです。	
		· 情	試灯回路は 最上段で説 0÷0.7=4;M−CEを選択M−CE5.5mm²R(に1条のみ)	明しますとブレ	ーカーが30A 電流を満足す :5.5-3Cが入っ は52Aです。 2Aですが低源	ですが低減 「るケーブル 力されます」 (電流値は	率が0.7で レを選定す 。 ケーブル20 じると52×	すので理論上 る必要があり Cの値が入力さ < 0.7=36.4Aと	ます。 :れます。) :なります。			許容電流が主幹定格電流	
		· 情	試灯回路は 最上段で説 0÷0.7=4;M−CEを選択M−CE5.5mm²R(に1条のみ)	明しますとブレ 2.9A以上の許容 Rすると自動的に P-3Cの許容電流に P配線であれば5	ーカーが30A 電流を満足す :5.5-3Cが入っ は52Aです。 2Aですが低源	ですが低減 「るケーブル 力されます」 (電流値は	率が0.7で レを選定す 。 ケーブル20 じると52×	すので理論上 る必要があり Cの値が入力さ < 0.7=36.4Aと	ます。 :れます。) :なります。			許容電流が主幹定格電流	
		· 情	試灯回路は 最上段で説 0÷0.7=4;M−CEを選択M−CE5.5mm²R(に1条のみ)	明しますとブレ 2.9A以上の許容 Rすると自動的に P-3Cの許容電流に P配線であれば5	ーカーが30A 電流を満足す :5.5-3Cが入っ は52Aです。 2Aですが低源	ですが低減 「るケーブル 力されます」 (電流値は	率が0.7で レを選定す 。 ケーブル20 じると52×	すので理論上 る必要があり Cの値が入力さ < 0.7=36.4Aと	ます。 :れます。) :なります。			許容電流が主幹定格電流 大きければOKです。	
	許容電	· 情	意灯回路は 最上段で説 0÷0.7=4/ M−CEを選択 M−CE5.5mm ² Rに1条のみ	明しますとブレ 2.9A以上の許容 Rすると自動的に P-3Cの許容電流に P配線であれば5	ーカーが30A 電流を満足す :5.5-3Cが入っ は52Aです。 2Aですが低源	ですが低減「るケーブル 力されます」 (電流値は	率が0.7で レを選定す 。 ケーブル20 じると52×	すので理論上 る必要があり Cの値が入力さ < 0.7=36.4Aと 幅を計算する	ます。 :れます。) :なります。 ものです。	端考 (1) JCS 0168- プルの許容電流	2 「33kV以下電力ケー 計算一第2部: 低圧ゴ		
	許容電ケーブルの段	・電 3 ・E ・E ・ 2 ・ 2 ・ 3 ・ 5 ・ 6 ・ 7 ・ 7 ・ 7 ・ 7 ・ 7 ・ 7 ・ 7 ・ 7	意灯回路は 最上段で説 0÷0.7=4/ M−CEを選択 M−CE5.5mm ² Rに1条のみ	明しますとブレ 2.9A以上の許容 ですると自動的に 2-3Cの許容電流に か配線であれば5 はあくまで許容	ーカーが30A 電流を満足す :5.5-3Cが入 は52Aです。 2Aですが低減 電流によるク	ですが低減「るケーブルカされます」(電流値は・	率が0.7で レを選定す 。 ケーブル20 じると52× Eとラック	すので理論上 る必要があり Cの値が入力さ < 0.7=36.4Aと 幅を計算する	ます。 :れます。) :なります。 ものです。	プルの許容電流 ム・プラスチックケーフ		許容電流が主幹定格電流 大きければOKです。	充より
		・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・	意灯回路は 最上段で説 0÷0.7=4/ M−CEを選択 M−CE5.5mm ² Rに1条のみ	明しますとブレ 2.9A以上の許容 ですると自動的に 2-3Cの許容電流に か配線であれば5 はあくまで許容	ーカーが30A 電流を満足す 5.5-3Cが入 は52Aです。 2Aですが低源 電流によるケ	ですが低減「るケーブルカされます」 (電流値はグスを乗び、ファーブル選定	率が0.7で レを選定す 。 ケーブル20 じると52× Eとラック	すので理論上 る必要があり Cの値が入力さ < 0.7=36.4Aと 幅を計算する	ます。 **れます。) **なります。 **ものです。 *** *** *** *** *** *** ** **	ブルの許容電流 ム・ブラスチックケーフ JCS 0168-3「3	計算-第2部:低圧コ゚ ゚ルの許容電流」及び 3kV以下電力ケープルの 第3部:高圧架橋ポ	 許容電流が主幹定格電流 大きければOKです。 ケーブ・ルの仕上がり外径 合計 Σ(D+10) ケーブ・ルラックの必要寸法 	充より 258.0

電路計算書	(幹線用)			3	建物名称	ECO労師ビル新	<u>斯築工事</u>									年 月	日	
周沙	皮数 [Hz]:	50	◆ 選択	必須		1											1	
幹線番号 又は名称	電気方式	電圧 [V]	幹線保 護用遮 断器定 格電流 [A]	系統	こう長 0 [m]	負荷名称	主幹器具 定格電流 [A]	設計負荷 電流 <i>I</i> [A]	負荷の 力率 cos θ	種別及び 断面積 A [mm ²]	電線及び配線方式	ケーブル ケーブ ル ラックの 場合の 低減率	許容 電流 [A]	電線1kmあ たりのイン ピーダンス Z[Ω/km]	e 単一配線 の	電圧降下 [V] 分岐があ る場合の 合計	許容電 圧降下 [V]	備考
L-N-1	単相3線	100/200	30		30.0	L-1	30	25. 2	0. 95	EM-CE 5. 5-3c	ケーフ゛ルラック配線	0. 70	36. 4	4. 152	3.14	ㅁ티	3. 0	
N-2	単相3線	100/200	50		30. 0	L-2	50	40. 6	0. 95	EM-CE 14-3c	ケーフ゛ルラック配線	0. 70	63. 7	1. 651	2. 02		3. 0	
N-3	単相3線	100/200	75		30. 0	L-3	75	62. 4	0. 95	EM-CE 22-3c	ケーフ゛ルラック配線	0. 70	84. 0	1. 052	1. 97		3. 0	
N-4	単相3線	100/200	100		30. 0	L-4	100	81. 6	0. 95	EM-CET 38	ケーフ゛ルラック配線	0. 70	115. 5	0. 625	1. 53		3. 0	
N-5	単相3線	100/200	125		30. 0	L-5	125	112. 5	0. 95	EM-CET 60	ケーフ゛ルラック配線	0. 70	157. 5	0. 406	1. 38		3. 0	
L-N-6	単相3線	100/200	150		30. 0	L-6	150	130. 8	0. 95	EM-CET 60	ケーフ゛ルラック配線	0. 70	157. 5	0. 406	1. 60		3. 0	_
L-N-7	単相3線	100/200	200		30. 0	L-7	200	178. 3	0. 95	EM-CET 100	ケーフ゛ルラック配線	0. 70	217. 0	0. 255	1. 37		3. 0	
		周波数及 1段7列で こう長30 電流は満	のケーブ びこう長 すので低 mを入力す 足しても	を入力する 減率は0. 7 [.] 「ると電圧! 電圧降下か	必要があ ですので [。] 降下は3.0 「不可とな	5ります。 低減率の欄に 0Vを超えるた いましたの	:0. 7と手入: :め3. 14と ፤ でリストよ	.カします。 <mark>赤で入りま</mark> :り8mm ² -30	。 ぎ <mark>す。</mark> に入れを	替えて下さい 。	では電圧降下を り太いケーブル			0 0				
電圧降下による e = 中性線がある	K' IIZ	· [V]		K': I: Q:	電気方式(設計負荷で こう長 [m		/ス [Ω/km]		回路 単相2線 三相3線		よる係数 係数 2 √3	- - - -						

よくある質問(天井ころがし配線)について説明します!

- ・電路計算書で配線方式は保護管、ケーブルラック、地中管路の3つですが電灯・コンセント配線で天井内ころがし配線とした場合、何でみたらよいか?の質問が多数ありましたので解説します。
- 1、小規模な工場・作業場で回路も少なく天井ころがし配線から電灯盤迄ケーブル露出の場合、ケーブルラック配線を選択し、低減率に1.0と入力します。
- 2、次に天井ころがし配線から電灯盤迄の立下りを配管に収容する場合は保護管を選択します。(最も不利な条件で計算するのが安全です。) 立下りが軽鉄間仕切りの中を保護管に入れないでそのままケーブルを配線する場合は上記のケーブルラックの算定で良いと考えます。
- 3、次に大型店舗のように電灯盤に40~50本ものケーブルが東になって配線される場合は低減率を0.5程度にして計算するのが安全です。
- 4、低減率 0.5 になれば許容電流も 17.5A に下がりますので好ましい状況ではありません。施工上、東にするとしても 3~4 本以下にまとめることに注意できれば低減率 0.7 でよろしいかと思います。
- 5、多数のケーブルを束にすると許容電流は設計電流以下となります。このような場合はケーブルが熱によって高温となり、火災の要因となります。束にしないとか、第一分岐迄はワンサイズアップのケーブルを使用するとかの注意が必要となります。
- 6、この考え方は幹線の天井内ころがし(実際は1mピッチで吊ります。)にも適用できます。


ワンポイントアドバイス

1、設計が EEF となっているのに、安価にするため VVF に変更する場合がよくあります。 EEF に比べて VVF の許容電流は小さいと認識しておいて下さい。VVF の電流値は H21 年版を参考としています。

電路	計算書(タ	分岐配線用	1)		建物名称				1	助力で50AJ	以下は定格の1.25倍、起	図える場合は1.1倍	で自動計算し	た数値です	· —	年 月 日	L
	盤名称:														<u>, </u>		
回路 番号	電気方式	電圧	配線用 遮断器 定格電流	系統	こう長	負荷名称	負荷容量	定格電流	電気方 式によ る係数	電圧降下 による 電線太さ	電 種別及び断面積	線及びケーブル 配線方式	ケーブ・ルラック配線の許容	許容電流	е	E降下 [V] 分岐がある	許容電
ш ў	22,000	[V]	[A]		0 [m]		[VA]	I [A]	K'	A [mm 2]	A [mm 2]	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	電流低減率	[A]		場合の合計	
	単相2線	100	20		12. 0	入力しなくても計算します	. 1, 500	15. 0	35. 6	3. 204	EM-EEF 2. 01 1. 6mm-2c	- ケーフ゛ルラック配線	1	24. 0	3. 19		2. 0
	単相2線	100	20		12. 0		1, 500	15. 0	35. 6	3. 204	VVF 2. 01 1. 6mm-2c	ケーフ゛ルラック配線	1	18. 0	3. 19		2. 0
											VVFはEEFより許容電流	乱は小さいです。		ì	・ 単相はブレー	カー以上の	電流必要
	三相3線 電動機	200	50		15. 0		5, 000	18. 0	30. 8	2. 079	EM-CE 5. 5 5. 5-3c	ケーフ゛ルラック配線	0. 7	30. 8	1. 52		4. 0
	三相3線 電動機	200	100		15. 0		5, 000	18. 0	30. 8	2. 079	EM-CE 5. 5 5. 5-3c	ケーフ゛ルラック配線	0. 7	30. 8	1. 52		4. 0
			大きすぎ	です。定格の	か3倍以内に	して下さい。											
	三相3線 電熱	200	40		15. 0		12, 100	35. 0	30. 8	4. 043	8 8-3c	保護管配線		43. 0	2. 03		4. 0
	三相3線 電熱	200	60		15. 0		12, 100	35. 0	30. 8	4. 043	EM-CE 8 8-3c	保護管配線		43. 0	2. 03		4. 0
			大きすぎ	です。													
	三相3線 その他	← UPS	、整流器、充	電器などで	す。												
						(2) 3705-3 過以 (3) 3705-4 電許 特記 照	30%以上18 過電流遮断器 以下とする。 運動機に供終 F容電流でも	0%以下の 器の定格電 合する分岐! あるものと コント回路	ものとす 流は当該 回路の電 する。	る。ヒー な電動機の 記線は、過	線用遮断器は、機械 -ター、電気釜等がま の定格電流の3倍 (50) 動電流遮断器の定格電 記線の場合ケーブルラ	きえられます。 Aを超える場合! 意流の40%以上(ま2. 75倍) - か				
	!線におけるî <i>K' 10</i>		章出		各線間の電電気方式に	圧降下 [V]			下によるi <i>K' 10</i>		回路	K':電気方式に の電気方式	こよる係数	係数			
e = -	<i>K' Iℓ</i> 1,000× <i>A</i>	[V]		$I:$ $\ell:$		流又は最大使用電流 [A]]	A =	$\frac{K' I\ell}{1,000 \times \epsilon}$	[mm ²]	単相2約 三相3約	建式、直流2線式		35. 6 30. 8 17. 8	- - -		

※例題-1

- 1. 各電灯盤迄の電路計算を行います。(周波数は50Hz)
- 2. 配線はEM-IEとし保護管に入線とします。
- 3. 変電設備があるため電圧降下は3%以下とします。

	許容電	圧降下	
	こう長	電圧	降下
	こり技	幹線	分岐
一般供給の	60m以下	2 %	以下
ある場合	1 2 0 m以下	4 %	以下
のの場合	200m以下	5 %	以下
変電設備の	60m以下	3%以下	2%以下
変电 放 棚 の ある場合	1 2 0 m以下	5 %	以下
のの場合	200m以下	6%	以下

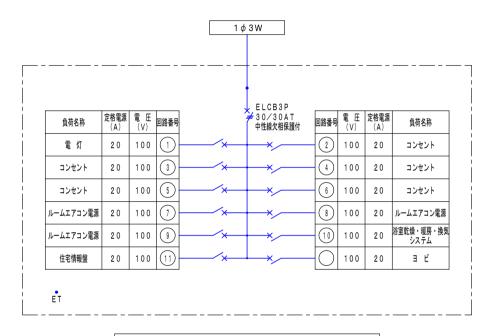
電路計算書	(幹線用)			<u>\$</u>	基物名称	ECO労師ビル新	近									年 月	<u>1</u>	
周波	支数 [Hz]:	50																
幹線番号 又は名称	電気方式	電圧 [V]	幹線保 護用遮 断器定 格電流 [A]	系統	こう長 0 [m]	負荷名称	主幹器具 定格電流 [A]	設計負荷 電流 <i>I</i> [A]	負荷の 力率 cos θ	種別及び 断面積 A [mm ²]	電線及び配線方式	ケーブル ケーブル ラックの 場合の 低減率	許容 電流 [A]	電線1kmあ たりのイン ピーダンス Z [Ω/km]	各線間の e 単一配線 の 電圧降下		許容電 圧降下 [V]	備考
L-N-1	単相3線	100/200	200		20. 3	L-1-1	200	175. 0	0. 95	EM-IE 100	保護管配線		225. 0	0. 238	0. 85		3. 0	
L-N-2	単相3線	100/200	225		19. 2			210. 0	0. 95	EM-IE 100	保護管配線		225. 0	0. 238	0. 96		3. 0	
	単相3線	100/200			3. 5	L-2-1	150	130. 0	0. 95	EM-IE 60	保護管配線		164. 0	0. 379	0. 18	1. 14V	3. 0	OK
	単相3線	100/200			7. 9	L-2-2	100	80. 0	0. 95	EM-IE 38	保護管配線		122. 0	0. 592	0. 38	1. 34V	3. 0	OK
L-N-3	単相3線	100/200	300		25. 3			275. 0	0. 95	EM-IE 200	保護管配線		354. 0	0. 136	0. 95		3. 0	
	単相3線	100/200			3. 5	L-3-1	125	105. 0	0. 95	EM-IE 60	保護管配線		164. 0	0. 379	0. 14	1. 09V	3. 0	OK
	単相3線	100/200	·		6. 9	L-3-2	125	105. 0	0. 95	EM-IE 60	保護管配線		164. 0	0. 379	0. 28	1. 23V	3. 0	OK
	単相3線	100/200			15. 0	L-3-3	75	65. 0	0. 95	EM-IE 100	保護管配線		225. 0	0. 238	0. 24	1. 19V	3. 0	OK

計算式の説明

中性線がある場合は中性線との電圧降下

·L-N-3で第1ボックス迄150mm²で選択すると298Aで赤表示されるため200mm²にアップしました。

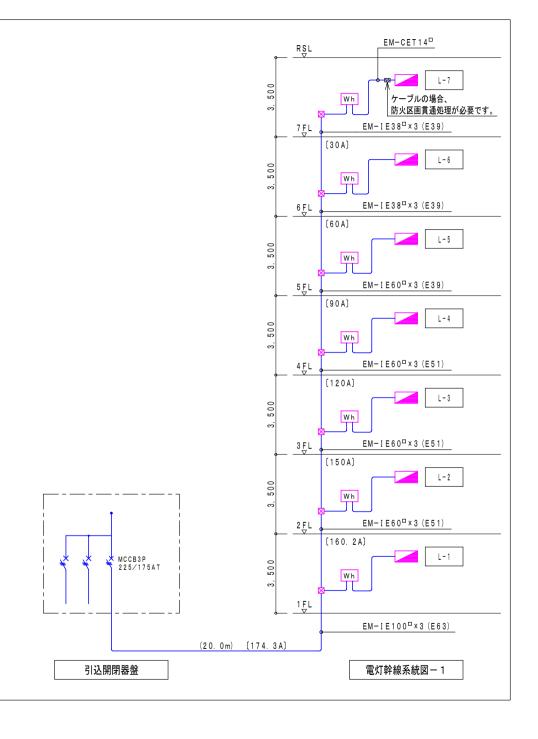
Z: 電線1kmあたりのインピーダンス [Ω/km]


- ・L-3-3は75Aプレ-カーですのでまず22mm²、38mm²が赤表示されたため60mm²に上げても<mark>164A</mark>と赤表示されます。 これは主幹300Aの55%以上(つまり165A以上)が必要となりますので赤表示です。100mm²でOKとなります。 L-3-1、L-3-2は分岐が8m未満ですので35%以上でよいため負荷が大きくても60mm²でOKとなります。
- ・分岐がある場合の合計はキュービクルより第1プルボックス迄とプルボックスから盤迄の合計値を手入力します。備考のOKも手入力です。

A : 電気力式に。	よる係数
回路の電気方式	係数
単相2線式	2
三相3線式	√3
単相3線式、三相4線式	1

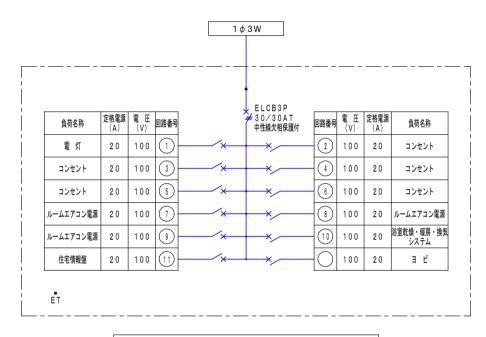
ト゛ロッフ゜ <i>タ゛</i> ウンリスト		絶縁電線の	
負荷の種類	地中管路の 埋設深さ	場合の周囲 温度(入力	低減率
絶縁電線の場合	地中管路の	無しの場合 は40℃)	
の本数	管路数	(140 C)	
電灯・コンセント			1. 00
3本以下			1.00
電灯・コンセント			1.00
3本以下			
電灯・コンセント 3本以下			1.00
電灯・コンセント			
3本以下			1.00
0.1.52.1			
電灯・コンセント			1. 00
3本以下			1.00
電灯・コンセント			1. 00
3本以下			
電灯・コンセント 3本以下			1.00
電灯・コンセント			
3本以下			1.00

※例題-1


- 1. 保護管内にEM-IE電線を入線し電路計算を行います。
- 2. L-7 (末端) 迄の電圧降下は2 V (2%) 以内とします。
- 3. 電線サイズは計算書で求めた数値です。
- 4. 接地線の表記は省略しています。

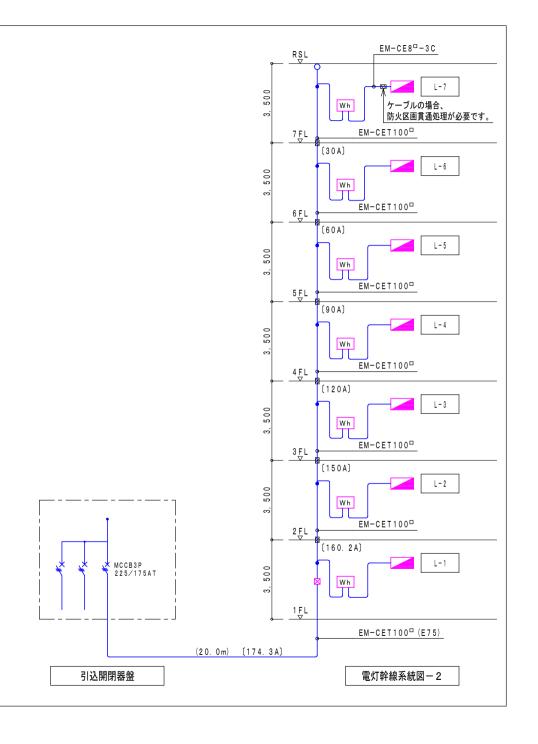
各戸電灯盤(L-1)~(L-7)結線図

※特記事項


- ・7階中層住宅の幹線計算をします。(1住戸60㎡程度)
- オール電化住宅ではありません。
- 各戸の想定負荷は余裕を見込んで6KVAとします。 (単3線電流は30A)
- ・需要率は内線規定を参考にしています。
- (例:5戸迄100%、6戸91%、7戸:83%)
- ・P. BOX分岐部より各戸電灯盤迄の距離は5. 0mとしています。

電路計算書	(幹線用)			3	建物名称_	<u>ECO労師ビル新</u>	<u>新築工事</u>									年月日					
周泊	波数 [Hz]:	50								_											
幹線番号 又は名称	電気方式	電圧	幹線保 護用遮 断器定 格電流	系統	こう長	負荷名称	主幹器具定格電流	設計負荷 電流	負荷の 力率	種別及び 断面積	電線及び配線方式	ケーブル ケーブル ラックの 場合の	許容電流	電線1kmあ たりのイン ピーダンス	各線間の ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・		備考	ト、ロップ・ケ・ウンリス 負荷の種類 絶縁電線の場合	地中管路の 埋設深さ	温度(入力	低減2
		[V]	[A]		0 [m]		[A]	I [A]	$\cos \theta$	A [mm ²]		低減率	[A]	$Z [\Omega/km]$	電圧降下	승計 [V]		の本数	管路数	(±40°C)	
L-N-1	単相3線		175		20. 0	第一分岐迄		174. 3	0. 95	EM-IE 100	保護管配線		225. 0	0. 238	0. 83	2. 0		電灯・コンセント 3本以下			1. 00
	単相3線				3. 5	2階PB迄		160. 2	0. 95	EM-IE 60	保護管配線		164. 0	0. 379	0. 22	2. 0		電灯・コンセント 3本以下			1. 00
	単相3線				3. 5	3階PB迄		150. 0	0. 95	EM-IE 60	保護管配線		164. 0	0. 379	0. 20	2. 0		電灯・コンセント 3本以下			1.00
	単相3線				3. 5	4階PB迄		120. 0	0. 95	EM-IE 60	保護管配線		164. 0	0. 379	0. 16	2.0		電灯・コンセント 3本以下			1.00
	単相3線				3. 5	5階PB迄		90.0	0. 95	EM-IE 60	保護管配線		164. 0	0. 379	0. 12	2.0		電灯・コンセント 3本以下			1. 00
	単相3線				3. 5	6階PB迄		60.0	0. 95	EM-1E 38	保護管配線		122. 0	0. 592	0. 13	2. 0		電灯・コンセント 3本以下			1. 00
	単相3線				3. 5	7階PB迄		30.0	0. 95	EM-1E 38	保護管配線		122. 0	0. 592	0. 07	2. 0		電灯・コンセント 3本以下			1. 00
	単相3線				5. 0	電灯盤迄		30.0	0. 95	EM-CET 14	ケーフ゛ルラック配線	1. 00	91. 0	1. 658	0. 25	1. 98V 2. 0	OK	電灯・コンセント			1.00
										14											
			最終 ・この 8mm ² ・この	開閉器よ 14mm ² で電 計算書が で配線す 方法は設	型灯盤に 絶対正し る方法等 計負荷電	配線でギリ いという いろいろ	ギリ2%! ものでは あります。 すること	以下に納 ありませ 。 はもちろ	めてい: た。立 かん、主	ます。 主幹を100mr 幹ブレーカ・	50mm²、38mm²と m²で通して最紀 一の55%以上	冬的に									
	。電線太さの第 - <u>K'IVZ</u> 1,000 る場合は中性	[V]		K': I: Q:	電気方式(設計負荷で こう長 [m		/ス [Ω/km]		回路 単相2線5 三相3線5		よる係数 係数 2 √3	-									

※例題-2


- 1. 集合住宅用プレハブ分岐工法で電路計算を行います。
- 2. L-7 (末端) 迄の電圧降下は2 V (2%) 以内とします。
- 3. 電線サイズは計算書で求めた数値です。
- 4. 接地線の表記は省略しています。

各戸雷灯盤(L-1)~(L-7)結線図

※特記事項

- ・7階中層住宅の幹線計算をします。(1住戸60㎡程度)
- オール電化住宅ではありません。
- ・各戸の想定負荷は余裕を見込んで6KVAとします。 (単3線電流は30A)
- ・需要率は内線規定を参考にしています。 (例:5戸迄100%、6戸91%、7戸:83%)
- ・幹線分岐部より各戸電灯盤迄の距離は5.0mとしています。

電路計算書	小学)			建物名称	ECO労師と	ル新築工事									年	月	<u>E</u>				
居	引波数 [Hz]:	50																				
幹線番号 又は名称	電気方式	電圧	幹線保 護用遮 断器定	系統	こう長	負荷名称	主幹器具定格電流	設計負荷 電流	負荷の 力率	種別及び 断面積	電線及び 配線方式	ケーブルケーブルラックの	許容電流	電線1kmあ たりのイン	各線間の e 単一配線	[V] 分岐があ	許容電 圧降下	備考	ト ロップ が ウンリスト 負荷の種類	地中管路の 埋設深さ	温度(入力	低減率
		[V]	格電流 [A]		0 [m]		[A]	I [A]	$\cos \theta$	$A \text{ [mm}^2]$		場合の 低減率	[A]	t゚ーダンス Z [Ω/km]	の 電圧降下	る場合の 合計	[V]		絶縁電線の場合 の本数	地中管路の 管路数	無しの場合 は40℃)	
L-N-1	単相3線	100/200	175		20. 0	1階分岐迄		174. 3	0. 95	EM-CET 100	ケーフ゛ルラック配線	1. 00	310.0	0. 255	0.89		2. 0		電灯・コンセント			1. 00
	単相3線	100/200			3. 5	2階分岐迄		160. 2	0. 95	EM-CET 100	ケーフ゛ルラック配線	1.00	310.0	0. 255	0. 15		2. 0		電灯・コンセント			1. 00
	単相3線	100/200			3. 5	3階分岐迄		150. 0	0. 95	EM-CET 100	ケーフ゛ルラック配線	1.00	310.0	0. 255	0. 14		2. 0		電灯・コンセント			1. 00
	単相3線	100/200			3. 5	4階分岐迄		120. 0	0. 95	EM-CET 100	ケーフ゛ルラック配線	1. 00	310.0	0. 255	0. 11		2. 0		電灯・コンセント			1. 00
	単相3線	100/200			3. 5	5階分岐迄		90. 0	0. 95	EM-CET 100	ケーフ゛ルラック配線	1. 00	310.0	0. 255	0. 09		2. 0		電灯・コンセント			1. 00
	単相3線	100/200			3. 5	6階分岐迄		60. 0	0. 95	EM-CET 100	ケーフ゛ルラック配線	1. 00	310.0	0. 255	0.06		2. 0		電灯・コンセント			1.00
	単相3線	100/200			3. 5	7階分岐迄		30. 0	0. 95	EM-CET 100	ケーフ゛ルラック配線	1. 00	310.0	0. 255	0. 03		2. 0		電灯・コンセント			1. 00
	単相3線	100/200			5. 0	電灯盤迄		30. 0	0. 95	EM-CE 8-3c	ケーフ゛ルラック配線	1. 00	65. 0	2. 858	0. 43	1. 9V	2. 0	OK	電灯・コンセント			1.00
			• ;	一般的に	用CETケ- 同サイズ		レをPSに追	通しますの		計算している m ² 、各住戸(ます。 のメーター及	び										
	る電線太さの $=\frac{K'IVZ}{1,000}$ oる場合は中間	– [v]	王降下	K': I: Q:	電気方式/ 設計負荷電 こう長 [m	直流 [A]	ンス [Ω/km]		回路(単相2線式 三相3線式		よる係数 係数 2 √3	- - - -										

低減率

1. 00 1. 00 1. 00

1. 00 1. 00 1. 00

電路計算書	小野 (幹線用)			3	建物名称	ECO労師ビ	ル新築工事	<u> </u>									F 月	且			
居	引波数 [Hz]:	50																			
幹線番号 又は名称	電気方式	電圧	幹線保 護用遮 断器定 格電流	系統	こう長	負荷名称	主幹器具定格電流	設計負荷電流	負荷の 力率	種別及び 断面積	電線及び 配線方式	ケーブ ル ラックの 場合の	許容電流	電線1kmあ たりのイン ピーダンス	各線間の e 単一配線 の			備考	ト、ロップ・ダ・ウンリスト 負荷の種類 絶縁電線の場合	地中管路の 埋設深さ	温度(入力無しの場合
		[V]	[A]		0 [m]		[A]	I [A]	$\cos \theta$	$A [mm^2]$		低減率	[A]	Z [Ω/km]	電圧降下	合計	[V]		の本数	管路数	/±40°C)
L-N-1分岐例	単相3線	100/200	100		30. 0			78. 0	0. 95	EM-1E 38	保護管配線		122. 0	0. 592	1. 39		3. 0		電灯・コンセント 3本以下		
	単相3線	100/200			5. 0	L-1-1	40	39. 0	0. 95	EM-IE 8	保護管配線		46. 0	2. 702	0. 53	1. 92V	3. 0	OK	電灯・コンセント 3本以下		
	単相3線	100/200			20. 0	L-1-2	40	39. 0	0. 95	EM-IE 8	保護管配線		46. 0	2. 702	2. 11	3. 5V	3. 0	NG	電灯・コンセント 3本以下		
																					-
At Dig T 47	W +D 046	100 /000	100		20.0			70.0	0.05	EM-IE	10 -tt //r = 7 / c		100.0	0.500	1 00		2.0		電灯・コンセント		
分岐例の正解		100/200	100		30. 0			78. 0	0. 95	38 EM-IE	保護管配線		122. 0	0. 592	1. 39		3. 0	211	3本以下 電灯・コンセント		
	単相3線	100/200			5. 0		40	39. 0	0. 95 0. 95	8 EM-IE	保護管配線		46. 0	2. 702		1. 92V	3. 0	OK OK	3本以下 電灯・コンセント		
	単相3線	100/200			20. 0	L-1-2	40	39.0	0. 95	14	保護管配線		66. 0	1. 531	1. 20	2. 59V	3. 0	OK	3本以下		
	る電線太さの $=\frac{K'I Z}{1,000}$	- [V]		K': I: Q:	電気方式! 設計負荷! こう長 [r		Vス [Ω/km]		回路 単相2線式 三相3線式		よる係数 係数 2 √3 1	- - - -									

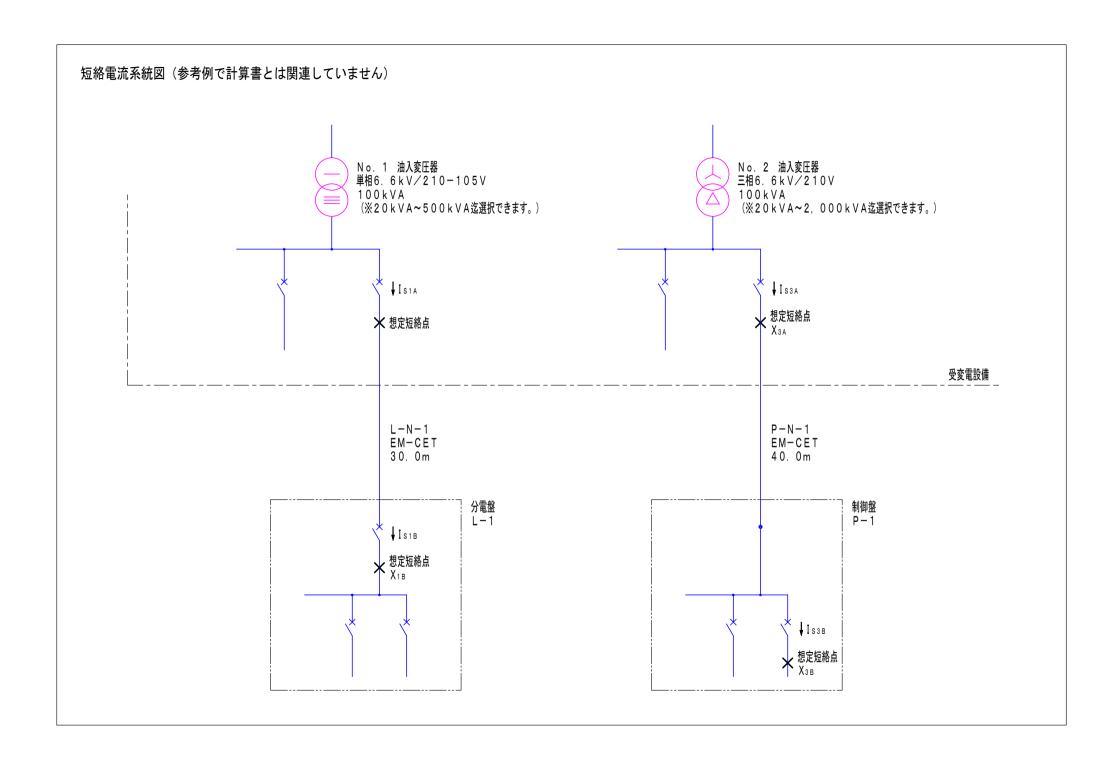
電路計算書	(幹線用))		-	建物名称	<u> E C O 労師</u>	ビル新築エ	<u>:事</u>				されていますが	ታ ዩ							月日
周波	数 [Hz]:	50									のないもので	す。				- 1	H30年版	様式かり	ら追加され	
幹線番号	定電	電圧	幹線保 護用遮		こう長		主幹器具	設計負荷 電流又は	電気 方式	負荷の	2∓⊓117	電線及	びケーブル	ile de	電線1kmあ		E降下 [V]	許容電	よる電線程 幹線より	機の定格電流に 重別及び太さ 分岐された O許容電流
野球番号 又は名称	方式	_	断機定 格電流	系統		負荷名称	定格電流	電流	による 係数	力率	種別及び 断面積	配線方式	配線の 許容電流 低減率	許容電流	たりのイン ピーダンス	単一配線の	る場合の		3m<0≦8mの場合幹線保護遮 断機定格電流	0>8mの場 合幹線保護遮 断機定格電流
	W 1-0/+	[V]	[A]		ℓ [m]		[A]	I [A]	K	cos θ	A [mm ²] EM-IE	/= -# 45 -= 44	EXIDAT	[A]	Z [Ω/km]	電圧降下	Tara	[V]	×35% [A]	×55% [A]
L-N-1分岐例	単相3線	100/200	100		30. 0			78. 0	1	0. 95	38 EM-IE	保護管配線		122. 0	0. 592	1. 39		3. 0		
	単相3線	100/200			5. 0	L-1-1	40	39. 0	1	0. 95	8	保護管配線		46. 0	2. 702	0. 53	1. 92V	3. 0	35. 0	
	単相3線	100/200			20. 0	L-1-2	40	39. 0	1	0. 95	EM-IE 8	保護管配線		46. 0	2. 702	2. 11	3. 5V	3. 0		55. 0
分岐例の正解	単相3線	100/200	100		30. 0			78. 0	1	0. 95	EM-IE 38	保護管配線		122. 0	0. 592	1. 39		3. 0		
	単相3線	100/200			5. 0	L-1-1	40	39. 0	1	0. 95	EM-IE 8	保護管配線		46. 0	2. 702	0. 53	1. 92V	3. 0	35. 0	
	単相3線	100/200			20. 0	L-1-2	40	39. 0	1	0. 95	EM-IE 14	保護管配線		66. 0	1. 531	1. 20	2. 59V	3. 0		55. 0
					・H27年 なって	版様式です 版様式でも ています。 がなくなっ	35%、55	%を満足て	きない	場合は	赤表示で出る	ように								
1) 電圧降下によ	こる電線太さ	きの算出		e :	電圧降下	[V]					K:電気方式に	よる係数		* 単相3約	泉式の1線は中	性線(又は	は接地線) ø	つため2線	の値を用いて	いる。
e = -	K I & Z	[V]			電気方式					回路	の電気方式	係数	 _							
	1, 000			ℓ:	設計負荷電 こう長 [m 雷線1kmあ		ダンス「O /len	i]		単相2線 三相3線 単相3線		$\frac{2}{\sqrt{3}}$	_							
2) 電線及びケーブ 単相の場合は 三相の場合は	は、幹線保証	護用遮断器	定格電流	こすこと。	A THEO		, [sa / Kii	-		1 IHOPA	— IN TANA	1								

電路計算書	(幹線用)	ı		3	建物名称	ECO労師と	『ル新築工事	<u> </u>								年_月	且				
周	波数 [Hz]:	50																			
		#FT*	幹線保		> 3 F		->-+V 00 E	50.51. A #*	会芸の	種別及び	電線及び	ケーブル	ate do	母伯11.よ	各線間の e			ト゛ロッフ゛タ゛ウンリスト	より選択 地中管路の	絶縁電線の	,
幹線番号 又は名称	電気方式	電圧	護用遮 断器定 格電流	系統	こう長	負荷名称	主幹器具定格電流	設計負荷電流	負荷の 力率	種別及い 断面積	配線方式	ケーブル ラックの 場合の	許容 電流	電線1kmあ たりのイン ピーダンス		.V] 許容電 分岐があ る場合の	備考	負荷の種類 絶縁電線の場合	地中官路の 埋設深さ 地中管路の	温度(入力	(低)
		[V]	[A]		0 [m]		[A]	I [A]	cos θ	$A \text{ [mm}^2]$		低減率	[A]	Z [Ω/km]	電圧降下	合計 [V]		の本数	管路数	/±40°C)	
L-N-10	単相3線	100/200	600		50. 0	L-10	600	550. 0	0. 95	EM-CET 325	ケーフ゛ルラック配線	0. 70	469. 0	0. 098	2. 70	3. 0		電灯・コンセント			1. (
	単相3線	100/200	300		50.0	L-10	300	275. 0	0. 95	EM-CET 200	ケープ・ルラック配線	0. 70	343. 0	0. 142	1. 96	3.0	ダブル0K	電灯・コンセント			1. 0
P-N-10	三相3線	200	1200		50. 0	P-10	1200	900. 0	0. 80	EM-CET 325	ケーフ゛ルラック配線	0. 70	444. 5	0. 111	8. 66	6.0		電動機(コンテ・ンサ無)			1. 0
	三相3線	200	600		50. 0	P-10	600	450. 0	0. 80	EM-CET 325	ケーフ゛ルラック配線	0. 70	444. 5	0. 111	4. 33	6. 0	ダブルNG	電動機(コンテ゛ンサ無)			1. 0
	三相3線	200	400		50. 0	P-10	400	300. 0	0. 80	EM-CET 250	ケーフ゛ルラック配線	0. 70	375. 2	0. 129	3. 36	6. 0	トリプル0K	電動機(コンテ・ンサ無)			1.0
															_						
					計算書の	説明															
											25A以下を原則 ることが多々あ			ヽますが							
											この場合は負荷			2 1/27							
					計算し	ます。備考に	ヹ゙ヺル、				このように上下										
					計昇書	になります。															
電圧降下による	る電線太さの	算出				電圧降下 [V] による係数				K':電気方式に の電気方式	よる係数係数	=									
e=	= K' IIZ 1,000	- [V]		I:	設計負荷(電流 [A]			単相2線元 三相3線元	t	2 √3	= -									
	3,000 る場合は中t					ɪ」 ったりのインピーダ				弋、三相4線式	1	_									

1	-	初电川匹川で	C & 7								/ 羽电用送がくら	0, 7					(137: 1	1 3 4)
特別の	17	ーブルラック計算	算書				建物名称	ECO労師	ビル新築工	₺						年	月日	
特別の	esti-					ケー	-ブル	ケーブル	レラック	,està					ケー	ーブル	ケーブル	レラック
1 日4日	電 力 用		電気方式		負荷名称	種別	サイズ	ケーブ ルの仕 上り外径	D + 10	電力用		電気方式		負荷名称	種別	サイズ	ケーブ ルの仕 上り外径	D + 10
1 日子 日本	_	1 N 1	24 +0 0 6 中			EM OF	0.5.0-			1	1 N 1	₩ +¤ 0 6 			EM OF	0.5.0-		
14-5 14-5 14-6																		
Pell																		
Pimple																		
Pi-1																		
Ref																		
S																		
1		PL-N-1	二 114 旅 八	230/400		EM-CE	00-4C	30.0	40.0	-								
D																		
1																		
1											FL-N-Z	二個年級工	230/400		LM-CL	22-40	23.0	33. 0
13																		
14																		
15																		
16																		
17																		
18																		
19																		
20 10 10 10 10 10 10 10																		
1																		
1																		
23																		
25																		
26	24									24								
Region 25									25									
Real Real Real Real Real Real Real Real	26									26								
29 1	27									27								
30 1	28									28								
31 1 1 1 1 1 1 1 1 1	29									29								
32 1 1 1 1 1 1 1 1 1	30									30								
33	31									31								
34	32									32								
35	33									33								
36 37 37 38 39 39 30 30 30 30 30 30																		
37	35									35								
許容電流低減率の算定 ケーブルの仕上り外径合計 ∑ (D+10) 209 許容電流低減率の算定 ケーブルの仕上り外径合計 ∑ (D+10) 298 ケーブルの段数 (m) 1 ケーブルラックの必要寸法 1.2 { ∑ (D+10)+60} 323 ケーブルの段数 (m) 1 ケーブルラックの必要寸法 1.2 { ∑ (D+10)+60} 428 ケーブルの列数 (n) 7 ラックの材料、仕上げの種類 ZM ケーブルの列数 (n) 10 ラックの材料、仕上げの種類 ZM																		
ケーブ μの段数 (m) 1 ケーブ μορ	37									37								
ケーブ・ルの列数(n) 7 ラックの材料、仕上げの種類 ZM ケーブ・ルの列数(n) 10 ラックの材料、仕上げの種類 ZM			算定									り算定						298
							寸法 1.2 {Σ		323							要寸法 1.2 {Σ		429
許容電流低減率 0.7 選定するケーブルラック ZM-400A 許容電流低減率 0.7 選定するケーブルラック ZM-500A			-	ラ	ラックの材料、仕								= /	ラックの材料、仕				
	Ī	許容電流低減率	0.7			選定するケー	ーブルラック	ZM-4	100A	Ī	許容電流低減率	0. 7			選定するケ	ーブルラック	ZM-5	500A

ケーブルラ	ック幅計算書	(電力用)		建物名称	ECO	労師Ŀ	ごル新築	工事					生	F 月	且		
	ty ép 亚 口	ケー	ブル		ケー:	ブルラ	ック			幹線番号	ケー	ブル		ケー	ブルラ	ック	
設置場所	幹線番号 又は名称	種別	サイス゛	仕上外径 D [mm]	間隔	段数	低減率	ラック幅	設置場所	野藤番号 又は名称	種別	サイス゛	仕上外径 D [mm]	間隔	段数	低減率	ラック幅
		EM-CET	14	21.0							EM-CET	14	21.0				
		EM-CET	22	24. 0							EM-CET	22	24. 0				
		EM-CET	38	28. 0							EM-CET	38	28. 0				
		EM-CET	60	33. 0							EM-CET	60	33. 0				
		EM-CET	100	41.0	,						EM-CET	100	41.0				
		EM-CET	150	47. 0							EM-CET	150	47. 0				
		EM-CET	200	55. 0							EM-CET	200	55. 0				
		EM-CET	250	60. 0							EM-CET	250	60.0				
		EM-CET	325	66. 0							EM-CET	325	66. 0				
		EM-CE	14-3c	17. 5							EM-CE	14-3c	17. 5				
		EM-CE	22-3c	21.0							EM-CE	22-3c	21.0				
		EM-CE	38-3c	25. 0							EM-CE	38-3c	25. 0				
		EM-CE	60-3c	31.0							EM-CE	60-3c	31.0				
		EM-CE	100-3c	40. 0							EM-CE	100-3c	40.0				
		EM-CE	150-3c	46. 0							EM-CE	150-3c	46. 0				
		EM-CE	200-3c	54. 0							EM-CE	200-3c	54. 0				
		EM-CE	250-3c	58. 0							EM-CE	250-3c	58. 0				
		EM-CE	325-3c	65. 0							EM-CE	325-3c	65. 0				
計				732. 5	S=D	1	0. 70	1200	計				732. 5	S=D	2	0. 50	700
↑									^						A		
												2段~	で選択して	こいます	すし		
「この行	で計を選択し	ます							[「] この行	で計を選択し	ます						

D+10の場合 D+5の場合


					D+	10の場	合				D+5の	場合	
ケーブルラ	ック幅計算書	(通信・情報	用)	建物名称_		ECO労	<u> 原ビル新築工事</u>				年	月目	<u>L</u>
	幹線番号	ケー	ーブル	ケ	ーブルラ	ック		幹線番号	ケー	ブル	ケ	ーブルサッ	ク
設置場所	野藤番号 又は名称	種別	サイス゛	仕上外径 D [mm]	D +	ラック幅	設置場所	野豚番号 又は名称	種別	サイス゛	仕上外径 D [mm]	D + 5	ラック巾
		EM-CEE	1. 25-4c	11. 0	21. 0				EM-CEE	1. 25-4c	11. 0	16. 0	
		EM-CEES	1. 25-6c	12. 5	22. 5				EM-CEES	1. 25-6c	12. 5	17. 5	
		EM-TIEF	0. 65mm-2c	3. 7	13. 7				EM-TIEF	0.65mm-2c	3. 7	8. 7	
		EM-AE	0. 9mm-2c	4. 0	14. 0				EM-AE	0. 9mm-2c	4. 0	9. 0	
		EM-HP	0. 9mm-2c	5. 0	15. 0				EM-HP	0. 9mm-2c	5. 0	10.0	
		EM-MEES	0. 5-2c	5. 8	15. 8				EM-MEES	0. 5-2c	5. 8	10. 8	
		EM-TKEE	0. 5mm-10p	9. 0	19. 0				EM-TKEE	0.5mm-10p	9. 0	14. 0	
		CCP-P	0. 5mm-10p	9. 5	19. 5				CCP-P	0.5mm-10p	9. 5	14. 5	
		EM-TIEE	0. 5mm-2p	4. 0	14. 0				EM-TIEE	0.5mm-2p	4. 0	9. 0	
		EM-BTIEE	0. 4mm-10p	6. 0	16. 0				EM-BTIEE	0. 4mm-10p	6. 0	11. 0	
		EM-UTP	0.5mm-4P(5e)	5. 5	15. 5				EM-UTP	0.5mm-4P(5e)	5. 5	10. 5	
		EM-FCPEE	0. 65mm-5p	8. 0	18. 0				EM-FCPEE	0.65mm-5p	8. 0	13. 0	
		EM-FCPEES	0.65mm-10p	9. 0	19. 0				EM-FCPEES	0.65mm-10p	9. 0	14. 0	
		同軸ケーブル	EM-S-5C-FB	7. 7	17. 7				同軸ケーフ゛ル	EM-S-5C-FB	7. 7	12. 7	
		光ファイバ	~200芯	15. 5	25. 5				光ファイバ	~200芯	15. 5	20. 5	
計				116. 2	266. 2	500	計				116. 2	191. 2	400
			- = -							-			
		計算書	の説明							_			
		_ - =n=⊥	甘淮ベけケ -	ず 11 88751-	+ D 1	0 6 +>	ていますが、弱	電館 けりょう	ズナ	.07			
			基準ではケー . 10とD+53					竜椒はレナ5	じも下がじり	o) e			
			102013	生送がてる	- O A J		→ 7 °			-			
	1												

短絡について

短絡はショートとも呼ばれています。電線同士がショートした状態になれば負荷の抵抗は電線の抵抗のみになり、非常に大きな電流が流れ熱が発生します。概略値で説明しますと 100V 回路でブレーカーより 10m先に消費電力 500W の電気器具が接線され、配線を IE2.0mm とすると通常 5A の電流が流れ電気器具の抵抗は 20Ω です。これが短絡すると IE2.0mm の電線抵抗は 1km 当り 5.65Ω ですので 10mでは 0.0565Ω となり、電流は 1770A (実際は電路のコイル分が影響しますので概略値です。) の大電流となります。条件により一概ではありませんが、1 秒間に約 25 Ω 程度温度上昇しますので $3\sim4$ 秒で電線を被覆しているビニルやポリエチレンは溶けてしまい、内部の電線も著しく性能低下します。電線は太くなる程抵抗は小さくなりますので電流値はより上昇します。

これを防止するには遮断器 (ブレーカー) で保護することになります。ブレーカーには 2.5kA、5kA、10kA というような規格があり、短絡電流を 遮断できるものを選定する必要があります。つまり 2.5kA のブレーカーを選定した場合、2.0kA の短絡電流であれば遮断できますがそれ以上の短 絡電流が流れた場合は遮断できず、ブレーカーも破損し、事故は継続し大事故に繋がります。

短絡電流の計算式は非常に難しい計算です。変圧器の容量にも関係しますし、電線サイズ、距離にも関係します。電灯幹線は過負荷及び<u>短絡電流</u>を保護する。動力幹線は短絡電流を保護すると規定されているように電気技術者にとって短絡の計算は非常に重要な項目です。

短絡電流計算書	(三相3約	泉)	<u>建</u>	物名称																——年	月日	
							11.30				1											
変圧器名称	電気方式	周波数 「Hz]	変圧器	器種別		E格容量 [kVA]	,	電圧 [V]		準容量 [kVA]												
No. 2	三相3線	50	油	入		00	V _B	210	I I	1,000	_											
			小 雪	動機	1				(a)	源総合		X_{3A}		1						①全%イン	·° 标如	点 X _{3R} に
③電源%4	'ンピ <i>ータ</i> ゙ンス		0.0	* ータ゛ンス		⑤変圧器	インヒ゜ータ゛ンス			Eの水心 ロ ピーダンス		、 A _{3A} 5短絡電流			(⑥電線%	インヒ゜ータ゛ン	ス		り主%12		· A 3B N る短絡電泡
遮断器定格 変圧器 1 遮断電流 次側電圧	受電点遮 断容量	電源 % インピ - ダンス	基準容量 換算前	% Z _M :		最換算前 ₹ _™ *	% 2	Z _T		% Z _S	三相 短絡電流	幹線保護用 遮断器定格	遮断器 設置位置	電線及びケー	ブル	2	Z_{W}	%	Z_{W}	% Z	三相電	短絡 配線 用遮
	P_{L}	$\%Z_{\rm L}$	% Z N*	$(\%X_{M})$	% R _T *	% X _T *	% R _T	% X _T	% R s	% X s	$I_{\rm S3A}$	遮断容量		_	こう長	R_{W}	$X_{\mathbb{F}}$	% R w	% X w	% R	6 X	
[kA] [V]	[kVA]	(=% X _L)	(=%X _M *)						2	D. 88	[kA]	[kA]		太さ[mm²] EM-CE	[m]	[Ω/km]				44. 83	[k	
12. 50 6, 600	142, 894	0. 699	25. 0	250	0. 95	1. 94	9. 50	19. 40	9. 50	18. 60	13. 17	14	P-1	14-3c	10.0	1. 340	0. 083	30. 385	1. 878	39.89	0. 48	. 13 7
一般的には12.5を	選択しま [・]	す。 手	引は0.7 ⁻	ですが0	. 699が正	です。							P-2	EM-CE	20. 0	0. 849	0. 082	38. 503	3. 719	52. 94	5	. 19 7
) 短絡電流 P。	• 100	55/	Z. I en :	想定短絡	点 X っ.にお	ける三相類	ā絡電流 [k	·A7						22-3c EM-CET						48.00 2	2. 32	
$I_{S3A} = \frac{P_B}{\sqrt{3 \cdot V}}$	T _B ⋅ % Z _S						A格電流 [k						P-3	38	30. 0	0. 491	0. 096	33. 401	6. 497	L	5. 10	. 53 7
_				基準容量									P-4	EM-CET	40. 0	0. 187	0. 088	16. 961	7. 991	37. 51	7	. 33 7
$I_{S3B} = \frac{P_B}{\sqrt{3 \cdot V}}$	· 100		-	基準電圧	[V] パーセント	A > 2 Inº 1	ゲ ンノフ							100 EM-FP-C						26. 46 2 278. 66	6. 59	
V 0 V	B /02				ハーヒンド ントインビ		, , ,						P-5	8-3c	50. 0	2. 360	0. 097	267. 574	11. 043		9. 64	. 99 2
) パーセントインピ [・]													1 -									
D全パーセントインヒ	. ,		_		③電源	パーセン	トインピー	・ダンス%	$Z_{\rm L}$					計算式の	逆明							
	2 + j% X =	. /011			% Z , =	= i% X ₁ =	F	В	• 100=	P_{B}	- • 100			1131-4-0								
$%R = %R_{S} +$	% <i>R</i> _₩ 、 % <i>X</i> :	$=\% X_{S} + \%$	$X_{\mathtt{W}}$,	. г. —		* L				 手入力⁻ 	するの	は名称	、位置、	こう長の	のみです	0		
		, let li			2.2					遮断器定格。	無断電流)[l	κA]		・その他(+11 7	L L []	,ss+□++1	a/ギ⇒上答)	. ++			
ここに、% R:	_						変圧器1次		-					・その他に	より人	トより	迭択9イ	いる計算り	しまり。			
	全パーセン				O ATT		受電点遮断 ントインビ		_					• 変圧器:	を大き	くすれ	ば遮断る	容量は大き	きくなり	、こう長が	長くなれ	ば
	電源総合パー		л											遮断容						. – , , , , ,	20 1 0 1 1	
	電線パーセン電源総合パー		マカカン・マ		% Z _M =	= j% X _M =	$\frac{P_{B}}{P_{x}}$	• % X _M *														
	電線パーセン						- 1			ノス (基準容)	昌梅質前)											
/011 1	HEART.		. •					変圧器定権			±1×++111/		必っ	「何かを入力	して下	さい。						
②電源総合パーセン	トインピー	ダンス% <i>Z</i>	S		⑤変圧	器パーセン	ントインビ	゚ーダンス	% Z _T													
$\% Z_{S} = \frac{(\% Z_{L} + \%)}{\% Z_{L} + \%}$	$Z_{T}) \cdot %Z_{M}$	_ (≒% <i>Z</i>	T)				$\%R_T+j\%$															
-						% R =	P_{B}	· % R *	. % X _т =	P_{B} P_{T}	· % X *											
$\% Z_{S} = \% R_{S}$		-	-																			
${}_{0}^{\prime}R_{S} = {}_{0}^{\prime}R_{T}, {}_{0}^{\prime}X_{S} =$	(% X _L +% X	(T) · % X M	-(≒% X _T))		ここに、				気抗(基準容) アクタンス		魚 質前)										
zz_{K} , % z_{L} :	,	- 1 / 11			⑥電線	パーセン	トインピー			,,,,,,,,	(25-7-11-25)	K-94* B1/	備考	(1) 基準容量 P	は1,00	DOkVAとす	る。					
-	変圧器パー				% Z w=	% R _W + j%	6 X w		"					(2)電動機%イ	ンピータ	ブンス% <i>X</i> ,	* は25%	とする。				
$\% Z_{M}$:	電動機パー	セントインロ	ピーダンス		0/ D	$R_{\rm W} \cdot P_{\rm B}$. 0 . 100		0/. v –	$= \frac{X_{W} \cdot P_{B}}{V_{B}^{2}}$. 0 . 100			(3)電源総合パ	ーセント	インピー	・ダンス%」	$Z_{\rm S}$ は、% $Z_{\rm S}$	s=%Z _T と	することができ	る。	
$\%R_{\mathrm{T}}$:	変圧器パー	セント抵抗			% K #=	$V_{\scriptscriptstyle \rm B}{}^2$	- • k • 100		% X _W =	$V_{\mathtt{B}}^{2}$	- · k · 100			$(\%Z_S = \%Z)$	として	算出する	場合は、%	$R_{\rm S} = \% R_{\rm T}$	% <i>X</i> _S ≒% <i>X</i>	7とし、③及び	④を省略す	る。)
$\%X_{L}$:	電源パーセ	ントリアク	タンス		ے ے	\mathbb{K} , $R_{ \mathrm{W}}$:	電線の導体	本抵抗 [Ω	/ k m]					(4)電源パーセ	ントイン	ノピーダン	ス% <i>Z</i> L は	、電源パー	セントリア	・クタンス% <i>X</i> L	として考え	る。
					1	17			F O / 1	-				(5)電動機パー		1 1 1 2 m = 17	1/70/7	1十 電影機	8 . S. Jan 1 . 1	11 = 2 2 2	V V 1.1 ~	老テス
$\%X_{T}$:	変圧器パー	セントリア	クタンス			X_{W} :	電線のリフ	アクタンス	LΩ/km	.]				(5) 电勤极八一	ピントイ	126-9	/ /0ZM	は、电動物		・リテクタンス	$\%A_{\mathrm{M}} \geq \cup \subset$	7 / C . 0 0

	<u> </u>															年 月	且	
	変圧器定格容量	基準電圧	基準容	容量														
変圧器名称 電気方式 HIV 変圧器	器種別 $P_{T}[kVA]$	V_{B} [V]	P_{B} [k	kVA]														
No. 1 単相3線 50 油	100	210		1, 000	単相は500	kVA迄しかあ	りません	ν _ο										
③電源%インピーダンス	④変圧器	₽インピ−ダンス	②電源: %インピ-			X _{1A} 短絡電流				(5電線%4	(ンピーダンス	ζ			らインピー ンス	短絡点 る短	絡電流
應断器定格 変圧器 1 受電点遮 電源 %インビ- 次側電圧 断容量 が/ンス	基準容量換算前 %Z _T *	% Z _T	% Z	S	単相 短絡電流	幹線保護用 遮断器定格	遮断 設置位		電線及び			Z w	%	Z_{W}	%	Z	単相短絡 電流	配納 用迪 定格
$ \begin{array}{c cccc} I_{\mathrm{L}} & E & P_{\mathrm{L}} & \% Z_{\mathrm{L}} \\ [\mathrm{kA}] & [\mathrm{kV}] & [\mathrm{kVA}] & (=\% X_{\mathrm{L}}) \end{array} $	%R _T * %X _T *	%R _T %X _T	% R s	% X s	I SIA [kA]	遮断容量 [kA]			種別 太さ[mm²]	こう長 [m]	R_{W} [Ω/km]	$X_{\mathtt{W}}$ [Ω/\mathtt{km}]	% R w	% X _W	% R	% X	I _{S1B} [kA]	名[]
12. 50 6, 600 142, 894 0. 699	1.00 1.97	10. 00 19. 70	10.00	20. 40	20. 97	22	L-1		EM-CET 38	30.0	0. 491	0. 096	66. 803	12. 993	83. 76. 80	75 33. 39	5. 69	7.
般的には12.5を選択します。手引は0.7です	すが0.699が正です。				•		L-2	2	EM-CET	30. 0	0. 311	0. 091	42. 313	12. 422	61.		7. 71	
) 短絡電流	担点标准上取印度的证券资料	层级最大 [1]							60						52. 31	32. 82		
$I_{S1A} = {}$	想定短絡点 X1Aにおける単相 想定短絡点 X1Bにおける単相						l I										_	
5 0	基準容量 [kVA]	AND CALL						ſ		n - •v-	_							
/ sip =	基準電圧 [V]								計算3	式の説明	1							
, B /02 /02 S.	電源総合パーセントインピー・ 全パーセントインピーダンス								・単木	目用の例	です。							
%Z: パーセントインピーダンス	生ハーセントインヒータンス								. ##	B+ = +6	9 + E 1* :	でナボム	ァーブル+	цノブボ·	+ 1\4₽£	- 奴 電 法	s/+	
)全パーセントインピーダンス% Z	③電源パーセン	トインピーダンス%	Z_{L}										う一つル:					
<i>Γ</i>																		
$\%Z = \%R + j\%X = \sqrt{\%R^2 + \%X^2}$	0/ Z = :0/ V =	P_{B}	100-	P_{B}	100				小石	さくなる	からで	9 。						
$\%Z = \%R + j\%X = \sqrt{\%R^2 + \%X^2}$ $\%R = \%R_S + \%R_W, \%X = \%X_S + \%X_W$	$\% Z_{L} = j\% X_{L} =$	$= \frac{P_{B}}{\sqrt{3 \cdot I_{L} \cdot E}}$	· 100= —	P _B	• 100				小石	さくなる	からで	9 0						
- 7011		$=rac{P_{\mathrm{B}}}{\sqrt{3}\cdot I_{\mathrm{L}}\cdot E}$ 変圧器 1 次側短絡電流		* L		:A]			小石	さくなる	からで	9 .						
- 7011	تداد، $I_{ m L}$:		荒(又は主遮 圏	* L		:A]			小石	さくなる	からで	9 °						
$%R = %R_{S} + %R_{W}, %X = %X_{S} + %X_{W}$	$\Xi \subseteq \mathcal{U}, I_L:$ $E:$	変圧器1次側短絡電流	た(又は主遮∟ ∇]	* L		:A]			小。	さくなる	からで	9 0						
% $R = \%R_S + \%R_W$ 、 $\%X = \%X_S + \%X_W$ ここに、 $\%R$: 全パーセント抵抗 %X: 全パーセントリアクタンス $\%R_S$: 電源総合パーセント抵抗	$\Xi \in \mathcal{C}, \ I_{\mathrm{L}}:$ $E:$ $P_{\mathrm{L}}:$	変圧器1次側短絡電流変圧器1次側電圧 [kV/	慌(又は主遮睢 Ⅵ A]	* L		:A]						9 0						
% $R = \%R_S + \%R_W$ 、% $X = \%X_S + \%X_W$ ここに、% R : 全パーセント抵抗 % X : 全パーセントリアクタンス % R_S : 電源総合パーセント抵抗 % R_W : 電線パーセント抵抗	ここに、 $I_{\rm L}$: E : $P_{\rm L}$:	変圧器1次側電圧 [k	慌(又は主遮睢 Ⅵ A]	* L		:A]		必ず	小で			9 0						
% $R = \%R_S + \%R_W$ 、% $X = \%X_S + \%X_W$ ここに、% R : 全パーセント抵抗 % X : 全パーセントリアクタンス % R_S : 電源総合パーセント抵抗 % R_W : 電線パーセント抵抗 % X_S : 電源総合パーセントリアクタンス	ここに、 $I_{\rm L}$: E : $P_{\rm L}$:	変圧器1次側短絡電流 変圧器1次側電圧 [kt 受電点遮断容量 [kV/ ントインピーダンスパ	慌(又は主遮睢 Ⅵ A]	* L		:A]		必ず				9 .						
% $R = \%R_S + \%R_\Psi$ 、% $X = \%X_S + \%X_\Psi$ ここに、% R : 全パーセント抵抗 % X : 全パーセントリアクタンス % R_S : 電源総合パーセント抵抗 % R_Ψ : 電線パーセント抵抗	ここに、 I_{\perp} : E : P_{\perp} : ④変圧器パーセ	変圧器1次側短絡電流 変圧器1次側電圧 [kV 受電点遮断容量 [kV/ ントインピーダンス ⁽⁾ = % R _T + j% X _T	た(又は主遮MV] A] ※ Z _T	断器定格遮	(断電流) [k	:A]		必ず				9 .						
% $R = \%R_S + \%R_W$ 、% $X = \%X_S + \%X_W$ ここに、% R : 全パーセント抵抗 % X : 全パーセントリアクタンス % R_S : 電源総合パーセント抵抗 % R_W : 電線パーセント抵抗 % X_S : 電源総合パーセントリアクタンス % X_W : 電線パーセントリアクタンス	ここに、 I_{\perp} : E : P_{\perp} : ④変圧器パーセ	変圧器1次側短絡電流 変圧器1次側電圧 [kt 受電点遮断容量 [kV/ ントインピーダンスパ	た(又は主遮MV] A] ※ Z _T	断器定格遮	(断電流) [k	:A]		必ず				9 0						
% $R = \%R_S + \%R_W$ 、% $X = \%X_S + \%X_W$ ここに、% R : 全パーセント抵抗 % X : 全パーセントリアクタンス % R_S : 電源総合パーセント抵抗 % R_W : 電線パーセント抵抗 % X_S : 電源総合パーセントリアクタンス % X_W : 電線パーセントリアクタンス % X_W : 電線パーセントリアクタンス	ここに、 I_{\perp} : E : P_{\perp} : ④変圧器パーセ % Z_{τ} = % R_{τ} =	変圧器1次側短絡電流 変圧器1次側電圧 [k^{t}] 受電点遮断容量 [k^{t}] シトインピーダンス N_{τ}	荒(又は主應性 $V]$ $A]$ WZ_{T} 、 WZ_{T} WZ_{T}	<u>P</u> _B P _T (基準容量	(本) (本) (本) (本) (本) (本) (本) (本) (本) (本)			必ず				9 0						
* $R = R_S + R_W$ 、 $X = R_S + R_W$ ここに、 $R : $	ここに、 I_{\perp} : E : P_{L} : ④変圧器パーセ % Z_{τ} = % R_{τ} =	変圧器1次側短絡電流 変圧器1次側電圧 [k^{t}] 受電点遮断容量 [k^{t}] シトインピーダンス $=$ $\%R_{7}$ + $j\%X_{7}$ $=$ P_{B} P_{T} \cdot $\%R_{7}$ *.	$\hat{\pi}$ (又は主應性 V] A] $%Z_{T}$ 、 $%X_{T}=-$ セント抵抗 $-$ セントリア:	<u>P</u> _B P _T (基準容量	(本) (本) (本) (本) (本) (本) (本) (本) (本) (本)			必ず				9 .						
% $R = %R_S + %R_W$ 、% $X = %X_S + %X_W$ ここに、% $R : 全パーセント抵抗$ % $X : 全パーセントリアクタンス$ % $R_S : 電源総合パーセント抵抗$ % $R_W : 電線パーセント抵抗$ % $X_S : 電源総合パーセントリアクタンス$ % $X_W : 電線パーセントリアクタンス$ % $X_W : 電線パーセントリアクタンス$	ここに、 I_{\perp} : E : P_{L} : ④変圧器パーセ % Z_{τ} = % R_{τ} =	変圧器1次側短絡電流 変圧器1次側電圧 [k^{t}] 受電点遮断容量 [k^{t}] シトインピーダンス $=$ $%R_{T}$ + j % X_{T} $=$ P_{B} $+$ $%R_{T}$ *. $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$	$\hat{\pi}$ (又は主應性 V] A] $%Z_{T}$ 、 $%X_{T}=-$ セント抵抗 $-$ セントリア:	<u>P</u> _B P _T (基準容量	(本) (本) (本) (本) (本) (本) (本) (本) (本) (本)			必 ず				9 .						
* $R = R_S + R_W$ 、% $X = R_W + R_W$ ここに、% $R : 全パーセント抵抗$ % $X : 全パーセントリアクタンス$ % $R_S : 電源総合パーセント抵抗$ % $X_W : 電線パーセント抵抗$ % $X_W : 電線パーセントリアクタンス$ % $X_W : 電線パーセントリアクタンス$ ②電源総合パーセントインピーダンス% Z_S % $Z_S = R_S + J + Z_T = R_S + J + R_S +$	ここに、 I_{\perp} : E : P_{\perp} : ①変圧器パーセ % Z_{τ} = % R_{τ} = ここに ⑤電線パーセン % Z_{ψ} = % Z_{ψ} = % Z_{ψ} % Z	変圧器1次側短絡電流 変圧器1次側電圧 [k^{t}] 受電点遮断容量 [k^{t}] シトインピーダンス $=$ $%R_{T}$ + j % X_{T} $=$ P_{B} $+$ $%R_{T}$ *. $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$	荒(又は主遮り V] X X X Y	F B P T (基準容量	・・% X ₁ * ・・% X ₁ * 量換算前) (基準容量核	美算前)		必ず				9 .						
$\$R = \$R_S + \$R_{\$}$ 、 $\%X = \%X_S + \%X_{\$}$ ここに、 $\%R$: 全パーセント抵抗 $\%X$: 全パーセント抵抗 $\%K_S$: 電源総合パーセント抵抗 $\%K_{\$}$: 電線パーセント抵抗 $\%K_{\$}$: 電線パーセントリアクタンス $\%X_{\$}$: 電線パーセントリアクタンス $\%X_{\$}$: 電線パーセントリアクタンス $\%X_{\$}$: 電線パーセントリアクタンス つきる。 $\%Z_S = \$Z_L + \$Z_T (= \%Z_T)$ $\%Z_S = \%R_S + j\%X_S = \sqrt{\$R_S^2 + \$X_S^2}$ $\%R_S = \%R_T$ 、 $\%X_S = \$X_L + \$X_T (= \%X_T)$ ここに、 $\%Z_L$: 電源パーセントインピーダンス $\%Z_T$: 変圧器パーセントインピーダンス $\%K_T$: 変圧器パーセントインピーダンス $\%K_T$: 変圧器パーセント 抵抗	ここに、 I_{L} : E : P_{L} : ①変圧器パーセ % Z_{τ} = % R_{τ} = ここに ⑤電線パーセン % Z_{ψ} = % R_{ψ} + j^{ψ} % R_{ψ} = $\frac{R_{\psi} \cdot P_{B}}{V_{B}^{2}}$	変圧器1次側短絡電流 変圧器1次側電圧 [k ¹] 受電点遮断容量 [kV] ントインピーダンス ⁽² = % R _T +j% X _T - P _B - P _T ・ % R _T *. 、 % R _T *: 変圧器パー % X _T *: 変圧器パー トインピーダンス% % X _W	荒(又は主遮り Y] X X Y	F B P T (基準容量	・・% X ₁ * ・・% X ₁ * 量換算前) (基準容量核	美算前)	備治		「何かを入	カして	下さい。							
* $R = {}^{\$}R_{S} + {}^{\$}R_{\Psi}$ 、% $X = {}^{\$}X_{S} + {}^{\$}X_{\Psi}$ ここに、% $R : $ 全パーセント抵抗 % $X : $ 全パーセント抵抗 % $R_{S} : $ 電源総合パーセント抵抗 % $R_{W} : $ 電線パーセント抵抗 % $X_{S} : $ 電源総合パーセントリアクタンス % $X_{\Psi} : $ 電線パーセントリアクタンス % $X_{\Psi} : $ 電線パーセントリアクタンス ②電源総合パーセントインピーダンス% Z_{S} % $Z_{S} = {}^{\$}Z_{L} + {}^{\$}Z_{T} (= {}^{\$}Z_{T})$ % $Z_{S} = {}^{\$}R_{S} + {}^{\$}Y_{S} = {}^{\$}X_{L} + {}^{\$}X_{T} (= {}^{\$}X_{T})$ ここに、% $Z_{L} : $ 電源パーセントインピーダンス % $Z_{T} : $ 変圧器パーセントインピーダンス	ここに、 I_{\perp} : E : P_{\perp} : ①変圧器パーセ % Z_{\top} = % R_{\top} = ここに ⑤電線パーセン % Z_{\parallel} = % R_{\parallel} + $\frac{1}{2}$ % R_{\parallel} = $\frac{R_{\parallel} \cdot P_{\parallel}}{V_{\parallel}^{2}}$ ここに、 R_{\parallel} :	変圧器1次側短絡電流 変圧器1次側電圧 [k ¹] 受電点遮断容量 [kV] ントインピーダンス ⁽² = % R _T +j% X _T - P _B - P _T ・ % R _T *. 、 % R _T *: 変圧器パー トインピーダンス% メ _X *: 変圧器パー	荒(又は主遮り \mathbb{V}] \mathbb{V} V	F B P T (基準容量	・・% X ₁ * ・・% X ₁ * 量換算前) (基準容量核	美算前)	備非	¥ (1) 基準容量 2) 電源総合	カして P _B は1,000 パーセン	Pさい。 OkVAとする トインビー	5。 - ダンス%	$\partial Z_{S} \pm \% Z_{S} = \% R_{T}$				5)	

短絡電	流計算書	(三相3編	泉)	<u>建</u>	地名称	-																F 月	且	
変圧器	名称	電気方式	周波数	変圧を	器種別	, , , , , , , , , , , , , , , , , ,	定格容量	'	電圧		準容量													
			[Hz]				kVA]	V_{B}	[V]	P_{B}	[kVA]	-												
No.	. 4	三相3線	50	油	入	1	50		210		1, 000													
		インヒ゜ータ゛ンス			動機 ゚ーダンス			インヒ゜ータ゛ンス			源総合 ピーダンス		X_{3A} 短絡電流			(⑥電線%/	インヒ゜ータ゛ンジ	ζ		①全% ダ:		短絡点 る短	絡電流
遮断器定格 遮断電流	変圧器1 次側電圧		電源 % インビ - ダンス	基準容量 換算前	$%Z_{M}:$		量換算前 ₹ _T *	%2	Z _T	g	Z _S	三相 短絡電流		遮断器 設置位置	電線及び	ケーフ゛ル		Zw	%	Z_{W}	%	Z	単相短絡 電流	配線(用遮 定格)
Ι _L [kA]	E [V]	$P_{\rm L}$ [kVA]	$%Z_{L}$ (= $%X_{I}$)	$%Z_{M}*$ $(=%X_{M}*)$	(% X M)	% R _T *	% X _T *	$%R_{\mathrm{T}}$	$%X_{\mathrm{T}}$	$%R_{ m S}$	$%X_{\mathrm{S}}$	I _{S3A} [kA]	遮断容量 [kA]		種別 太さ[mm ²]	こう長 [m]	$R_{\rm W}$ $\lceil \Omega / {\rm km} \rceil$	X_{W} $\lceil \Omega / \text{km} \rceil$	$\%R_{\rm W}$	$\%X_{\tt W}$	% R	%X	I _{S3B} [kA]	容量 [kA
12. 50	6, 600	142. 894	0, 699	25. 0	166, 66	0. 94	2. 08	6, 26	13. 86		. 77	18. 62	22	P-1	EM-CET	20. 0	0. 187	0. 088	8, 481	3, 995	22.		12. 06	14
	-,	,						0.20	10.00	6. 26	13. 38				100		0.107	0.000			14. 74	17. 38		
一般的に) 短絡電		選択しま	す。 手引	は0.7で	すかり. 6	99か止て	ें जि							P-2	EM-CET 60	20.0	0. 311	0. 091	14. 104	4. 141	26. 3	17. 52	10. 24	
,		• 100	221	⊄, I _{S3A} :	想定短絡	点 X_{3A} にお	ける三相短	A 経電流 [k	:A]						EM-CET						58 3			7=
$I_{\rm S3A} =$	√3 · V	• 100 V _B • % Z _S						5絡電流 [k							38	30.0	0. 491	0. 096	33. 401	6. 497	53. 77	24. 02	4.67	5
				$P_{\rm B}$:	基準容量	[kVA]								入力しな	い。			是	初に入っ	た値が	# + + 			結:
$I_{S3B} =$	$P_{\rm B}$	• 100 V _B •%Z			基準電圧														MIC/C	プロログラ	H/L & 9 a			
	√ 3 · 1	V _B ⋅%Z				パーセント ントインヒ		ブンス																
)パーヤ	ントインビ	ーダンス		% Z :	主ハーゼ	7 F1 7 E	ータンス																	
		ピーダンス%	o Z			③電源	パーセン	トインピー	・ダンス%	Z _L					計算章	の説明	1							
	% Z = % I	₹+j% <i>X</i> =	$\sqrt{{\%R^2+\%X}}$	2		0/ 7	-:0/ V -	F	D _B	100-	P B	100			00	24 0	ı021 - +	-人 / 白 / 八 .1-4	-1 7 18 7	ヘチュ	tor±∧`		•	
	$%R = %R_{S}$	+% R _₩ 、 % X :	$=\%X_{S}+\%$	$X_{\mathtt{W}}$		/0 Z [-J/0 A L-	√3 ·	$I_{L} \cdot E$	100-	P_{L}	- • 100					水めた			の劉刀弘	盤主幹ブ	レーカ・	— 0)	
						2.5					遮断器定格。	態断電流)[k	:A]		<u>√π</u> .ή.	1 12/16 C	,,,,,,,,	· л ц с .	, 0					
2.2		全パーセン		_				変圧器1次		-														
		全パーセン 電源総合パ				小雪動		受電点遮断 ノトインビ																
		電線パーセ)L																				
		電源総合パ		アクタンス		% Z _M :	= j% X _M =	$\frac{P_{B}}{P_{T}}$	· % X M															
	$\%X_{\mathbb{T}}$:	電線パーセ	ントリアク	タンス			ここに、	$\%X_{\mathtt{M}}\!\!*:$	電動機%	リアクタン	ス(基準容量	量換算前)												
										各容量 [kV	A]													
0		トインピー		5		⑤変圧		ノトインビ		$\%Z_{T}$														
$\% Z_S =$	%Z₁+	$(Z_T) \cdot \% Z_M$	(≒% Z	(_T)			,	% R _T +j%			D													
	L	$S + j\% X_S =$					$\% R_T =$	P T	· % R T	$\ \ \%X_{T} =$	P _B	• % X _T *											_	
	-	(% X _L +% X			`						抗(基準容量													
0 K _S = % K	T, % A S=	% X L+% Z	$X_{\mathtt{T}}$ +% $X_{\mathtt{M}}$	-(= % A _T	,						アクタンス	(基準容量接	(算前)											
ここり		電源パーセ						トインピー	・ダンス%	Z_{W}				備考	(1)基準容量.			-						
		変圧器パー・電動機パー・		- ,			% R w + j%				V . D				(2)電動機%~ (3)電源総合~					± 0/, 7 1	ナステ しがっ	でキェ		
		電動機ハー・変圧器パー・		レータンス		% R _₩ =	V_{a}^{2}	· l · 100		% X _w =	$\frac{X_{W} \cdot P_{B}}{V_{P}^{2}}$	- · l · 100									9 ることが ″īとし、③⅓		介略する.)
		電源パーセ		タンス			. в	電線の導体			* B				(4)電源パー・									
	-	変圧器パー						電線のリフ]				(5)電動機パー			-				-		こる。
		雷動機パー				1		電線のこう																

																					試 電−]	10-3)
短絡電流計算書	(単相)		建物名称																年	F 月	<u>E</u>	
変圧器名称	電気方式	周波数	変圧器種別		定格容量	基準			準容量													
24. 11.11		[Hz]	24		kVA]	V_{B}	[V]		[kVA]													
No. 5	単相3線	50	油入	1	15		210		1, 000													
③電源%イ	インヒ゜ータ゛ンス				④変圧器	インヒ゜ータ゛ンス			源総合		X_{1A}			(5)電線%	インヒ゜ータ゛ン	7.		①全%		短絡点	ID
主遮断器定格 変圧器 1	受電点遮	電源			計			%1 ²	t°ータ゛ンス	における 単相	5 短絡電流	New March 1919							タン		単相短絡	終電流 配線保証
主遮断器定格 変圧器 1 遮断電流 次側電圧	安電点巡 断容量	%インt" ー タ"ンス			型 (分子)	% 2	Z _T	9	6 Z _S		幹線保護用 遮断器定格	遮断器 設置位置	電線及びケ	ーブ゛ル	2	Z_{W}	%	$Z_{ \mathbb{W}}$	%.	Z	単相短絡 電流	用遮断器
I_{L} E	P_{L}	%Z _L		% R _⊤ *	% X _T *	% R т	%Хт	%R s	% <i>X</i> s	$I_{ m S1A}$	遮断容量		種別	こう長	$R_{\scriptscriptstyle{W}}$	$X_{\mathtt{W}}$	% R =	% X w	% R	% X	$I_{ m S1B}$	定格遮脚容量
[kA] [kV]	[kVA]	(=% X _L)		/0 / T-1-	/0.2A T**	/0 / \C T	/0 /A T	. 3	. 5	[kA]	[kA]		太さ[mm ²]	[m]	$\left[\Omega/\text{km}\right]$	$\left[\Omega/\text{km}\right]$	/0 At #	/0 A W	/	/	[kA]	[kA]
12. 50 6, 600	142, 894	0. 699		0. 99	1. 35	13. 20	18. 00		2. 88	20. 82	22	L-1	EM-CET	27. 5	1. 340	0. 107	167. 120	13. 345	183.		2. 60	5
######################################	2000			0.13	<u></u>			13. 20	18. 70				14 EM-CE						180. 32 476.			
般的には12.5を過 1)短絡電流	選択します	。于知	10. /ですか0. 69	9か止で	9 。							L-2	5. 5–3c	30.0	3. 400	0. 091	462. 585	12. 435	475. 79		1.00	2. 5
,	• 100	J. J. 18	 I_{SIA}: 想定短絡。 	点 X14にま	いける単相知	F終雷流「1	c A T						EM-CET						198			
$I_{SIA} = \frac{P_B}{V_R}$	% Z s		I SIB: 想定短絡				_					L-3	14	30.0	1. 340	0. 107	182. 313	14. 558		33. 26	2. 40	
-	_		P _B : 基準容量	[kVA]			_						EM-CE	45.0	0.400	0.001	004 000	0.010	428.	63	/.	7
$I_{S1B} = \frac{P_B}{V_B}$	• 100		VB: 基準電圧	[V]									5. 5-3c	15. 0	3. 400	0. 091	231. 293	6. 218	426. 81	39. 48	1/11	2. 5
$V_{\rm B}$ ·	· % Z		% Z s: 電源総合			ゲンス						L-4]	EM-CET	45. 0	0. 187	0. 088	38, 163	17. 980	63. 1		7. 54	10
			% Z : 全パーセ	ントインビ	゚ーダンス							L 43	100	40.0	0. 107	0.000	00. 100	17. 300	51.36	36. 68	7. 54	10
2) パーセントインピ		/ -			1- > . 1	45.00	H'S 0/	7] 1 + 1 +:	-1.			4m/- 3	+ 1+ +82	w = ++			_	結果
①全パーセントインヒ		·	_	0 =	パーセント			L				入力しな	LU'o			例に入っ	た値が消	れます	0			心木
	2+j%X=	. /011		% Z _L =	= j% X _L =	F	РВ —	· 100=	P _B	- · 100											_	
$%R = %R_{S} + $	%K _₩ 、%X:	= % X s+ %.	X w			, , ,	L		P⊥ 遮断器定格测		- 47											
ここに、% R:	全パーセン	ト抵抗				変圧器1次			巡問番足僧》	些的电机/に	KAJ											
	全パーセン		/ ス			受電点遮断	_	-														L
	電源総合パ				- L.	,							=1 Arr _B .	- 5¥ 88								
$\%R_{\scriptscriptstyle{W}}$:	電線パーセ	ント抵抗		④変圧	器パーセン	/ トインピ	ーダンス	% Z _T					計算式(り説明								
$\%X_{S}$:	電源総合パ	ーセントリア	マ クタンス										• 14mm ²	から5.	5mm ² を分	分岐した	場合の電	[灯盤主]	幹ブレース	カーの		
$\%X_{\mathtt{W}}$:	電線パーセ	ントリアクタ	ソ ス		$\% Z_T =$	$\%R_{T}+j\%$	X_{T}						短絡電	 配流を	求めた場	易合です	0					
					% R _=	P_{B}	· % R _T *	×, % X _T =	P_{B}	- · % X _T *							_					
②電源総合パーセン	トインピー	ダンス% <i>Z</i>	S			P_{T}			P_{T}												_	
% Z s=% Z	10/ 7 (÷0	/ 7)			1-	0/ D * .	πkrc w .e.	Je V. 1.46	·世 / 甘港宏	見格答: (1)												
$\%Z_S = \%Z_S$:抗 (基準容: アクタンス		6首前)										_	
$\% Z_{S} = \% R_{S}$ $\% R_{S} = \% R_{S}$	-	_	-	⑤雪 線	パーセント				,,,,,,	(各字位里)	大手 hii /											
/0 N S — /0 N	CT. /0215-	/021 L /021 L	- 70 A T)		$\%R_w+j\%$		/ / / / / / 0	2 W													1	
ZZK , $\%Z_{L}$:	電源パーセ	ントインピー	-ダンス				00	0/ v —	$\frac{X_{W} \cdot P_{B}}{V_{B}^{2}}$. 0 . 0 . 10	20	備考	(1) 基準容量 P	' _B は1,00	OkVAとす	る。						
· · · · · · · · · · · · · · · · · · ·	変圧器パー		ピーダンス	/0 K ≡=	$V_{\rm B}^{\ 2}$	- 2 • k • 1	υU	/0 A ₩=	$V_{\rm B}^{\ 2}$	- · ∠ · ½ · 10	JU		(2) 電源総合/							-		
•	変圧器パー												_				-	-	Y _T とし、③を			
	電源パーセ			2.2	に、R _▼ :	電線の導体電線のリア	-	_	1				(3)電源パーセ	ントイン	ノビーダン	/ス% <i>Z</i> Lは、	、電源パー	セントリア	クタンス%.	$X_{L} \succeq \bigcup \mathcal{T}$	考える。	
% A ↑ :	変圧器パー	ヒントリアク	ウンム		<i>X</i> _₩ :	电線のリフ	クタンス	LΩ/km	1													
					ι:	電線のこう	長「mヿ															

変圧器容量計算書

電灯設備負荷容量集計表と動力設備負荷容量集計表がまとまったら、この変圧器容量計算書で変圧器の容量を算定します。 入力例は負荷集計入力例の値とは違う数値を仮に入れています。

1、単相変圧器

- (1) 照明~OA負荷コンセント迄負荷容量 [kVA] を入力すると補正係数が自動入力されます。補正係数は圧縮率とも需要率とも呼ばれています。
- (2) 補正係数は設計基準を参考にしていますが注意が必要です。
- (3) この補正係数表は事務所ビルを対象としていますので、上書きで適宜変更できるようにしています。例えば、デパート等の店舗は照明は 100%に近い数値にしておくのが安全です。コンセントも実状に応じて修正して下さい。
- (4) OA負荷コンセントは1.0 (100%) と自動入力されますが、実状に応じて適宜考慮して下さい。

2、三相変圧器

- (1) 夏期・冬期負荷共に入力して下さい。(両方入力すると大きい方を算定します。)
- (2)衛生関係の補正係数は特に注意が必要です。事務所ビルの衛生関係は給排水ポンプ等同時需要は少ないですが温浴施設のような建物の循環ポンプ等は100%運転ですので状況を考慮して上書き修正して下さい。
- (3)空欄部分は冷凍機~衛生関係以外の入力欄を用意しています。入力例では厨房関係を入れております。

変圧器	器容量計算	書			建物名称									年 月 日	电 11/
変圧器名称	負 百	苛 種 別		負荷容量 [kVA]	補正係数	補正負荷容量 [kVA]	備考	変圧器名称	区 分	負 荷 種 別		負荷容量 [kVA]	補正係数	補正負荷容量 [kVA]	備考
	照明	Σ	L	48. 6	f_1 = 0.81	39. 4				冷凍機		8. 5			
No. 1	FCU・OA負荷以	外のコンセント Σ	C	15. 6	f_2 = 0 . 32	5. 0				パッケージ形空調機	Σ Ρα	11. 6 11. 6			
変圧器	FCU コンセント	Σ	FC	1. 2	f ₃ = 0. 93	1.1		変圧器		エレヘ゛ータ		19. 0 19. 0			
単相	0A負荷コンセント	Σ	OA	8. 5	f_4 = 1.00	8. 5		三相	夏	小 計		39. 1 30. 6	f_5 = 0.98	38. 3 30. 0	
75								150	期	空調関係	ΣP b	81. 0 13. 8	f_6 = 0. 79	64. 0 10. 9	
[kVA]		補正負荷容量 補正負荷容量				坦 会け		[kVA]	負	衛生関係	$\Sigma P c$	23. 9	$f_7 = 0.21$	5. 0	
油入		福工具刊存量 100kVAと入力				<i>™</i> □ (3.		油入	荷	その他(厨房機器)		30. 4	0. 60	18. 2 1. 4	
				合	計	54. 0				↑追加で手入力し	しています。				
	照明	Σ	L	63. 8	f_1 = 0 . 78	49.8									
No. 2	FCU・OA負荷以	外のコンセント Σ	C	17. 3	f_2 = 0.31	5. 4						合	計	125. 5 42. 3	
変圧器	FCU コンセント	Σ	FC	1.8	f_3 = 0. 92	1.7				冷凍機		8. 5			
単相	0A負荷コンセント	Σ	OA	6. 5	f_4 = 1.00	6. 5				パッケージ形空調機	Σ Ρα	12. 1 12. 1			
75										エレヘギータ		19. 0 19. 0			
[kVA]									冬	小 計		39. 6 31. 1	f_5 = 0.98	38. 8 30. 5	
油入									期	空調関係	ΣP b	67. 2	f_6 = 0 . 80	53. 8	
				合	計	63. 4			負	衛生関係	$\Sigma P c$	23. 9	$f_7 = 0.21$	5. 0	
	直流電源装置	Σ	L1	2. 9	f_1 = 0.99	2. 9			荷	その他(厨房機器)		30. 4 2. 4	0. 60	18. 2 1. 4	
No. 3		Σ	C1		f_2 =										
変圧器	L-1, L-2			12.0	0. 96	11.5									
スコット												合	計	115. 8 31. 9	
30	直流電源装置	Σ	Lr	3. 9	f_1 = 0.99	3. 9		Alle der	(-)			Len 4	# 	A	
[kVA]		Σ	Cr		f_2 =			備考		三相負荷容量の記載は による。				甫正負荷容量 ˇータ運転負荷容量	又は
油入	L-3, L-4			12.0	0. 96	11.5						イン	バータ運転補エ	E負荷容量	
										ΣL , ΣC , ΣFC , ΣC		備を含まなV) 0		
				合	計	29. 8				補正負荷容量=負荷容量×		6-L-H	I No		
									(4)	三相負荷補正係数 $f_1 \sim f_7$ は、	上段の負荷	寄量に対す	「る補正係数	を採用する。	

力率改善用コンデンサ容量計算書

力率とは

- ・交流回路は電圧と電流にズレが生じます。これを位相差と呼び電流が電圧より遅れますので遅れ力率となります。
- ・三相交流の場合、有効電力(W) = $\sqrt{3}$ ×電圧×電流×COS θ (力率)となります。 その他の関係式で説明しますと無効電力(Var) = $\sqrt{3}$ ×電圧×電流×sin θ 。皮相電力(VA) = $\sqrt{3}$ ×電圧×電流。 つまり力率は有効電力と皮相電力の割合であり、力率=有効電力/皮相電力となります。
- ・力率が悪いと同じ電力を使用する場合、電流が増大します。1kW のモーターを 100V で動かす場合、力率が 100% であれば 10A の電流が流れ、 力率 80%時は 12.5A、力率 70%時は 14.3A となり消費電力も電圧降下も大きくなり好ましくありません。逆に力率が良くなれば有効電力は 大きくなるので電気料金も安くなります。

力率改善

・電圧と電流の位相差をゼロに近づけることです。設計基準では改善後の力率は 98%を目標とするとあります。また改善前の力率は右のドロップダウンリストを選択すると自動入力されますが、これは上書き修正できるようにしてあります。力率を改善するためには進相コンデンサを入れることで電流の遅れを進ませて効率の良い電力消費を行うことができるようになります。

ワンポイントアドバイス

- 1、昔は動力トランスの30%程度を目安に選定していましたが、その結果電力会社は<u>進み過ぎで困っている</u>状況です。 進み力率は受電端の電圧を上昇させ、機器や配線に悪影響を与えますので適正な容量を選定することが重要です。
- 2、<u>インバータ機器の容量は計算に入れません</u>。エアコンなどのインバータ機器に進相コンデンサを入れると発熱・発火の恐れがあるためです。 単純な汎用電動機の力率改善のために設置するものです。
- 3、コンデンサが発生する高調波、またコンデンサを投入した時の突入電流を緩和するために直列リアクトルを設置します。高調波抑制のための 計算対象は第5調波ですので4%となり、若干余裕を見込んで6%が一般的です。
- 4、力率は常に変動していますし、夜間の負荷はほとんどない建物も多くあります。小規模(キュービクルPF形)であれば特に問題ありませんが規模が大きい(キュービクルCB形)施設では複数台設置し、自動力率調整(APFC)を行うのがよろしいです。

(様式: 1	Ē — 1	9

												(18)	式 電-12)	
力率改善用コンラ	デンサ容量計	·算書		建物名称								年	月 日	
変 圧 器 名 称	変圧器容量	変圧器の 無負荷時 無効電力		補正生	負 荷 容 量 (P _t)		改善前の 力 率 (cos θ 。)	改善後の 力 率 (cos θ)	補正負荷容量 に対する所要 設計無効電力 [kvar]の割合 $\cos\theta_0(\tan\theta_0)$	所要設計 無効電力 (Q _c)	所要設計 無効電力 電力合計 ①+②+③+④	定 格設備容量	定格容量	
	[kVA]	[kvar]			[kVA]		変更可	入力	$-\tan \theta$)	[kvar]	[kvar]	[kvar]	[kvar]	変圧器の種類
 N0.1単相変圧器	75	0. 14			68. 2		0. 95	0. 98	0. 119	8. 1	[II/GI]	[III of]	[HVGZ]	6kV 油入 1φ
	100	0. 18			82. 4		0. 95	0. 98	0. 119	9.8				6kV 油入 1φ
				変圧器容量計算書	で算出した値を	手入力					95. 48	30	31. 9	
												[kvar]	[kvar]	
											手入力	3	3	
	小計①	0. 32							小計③	17. 90		[台]	[台]	
変 圧 器 名 称	変圧器容量	変圧器の 無負荷時 無効電力	区分	補正負荷容量 [kVA]	力率改善を 考慮する補正	夏期又は 冬期負荷の 大きな値	改善前の 力 率	改善後の 力 率	補正負荷容量に対する所要設計無効電力	所要設計 無効電力		周波数によ	り無効電力(は変わります。
名	[kVA]	無効電力 [kvar]		インバータ運転 補正負荷容量	負荷容量*	人さな他 (P ₁)	(cos θ ₀) 変更可	(cos θ) 入力	[kvar]の割合 cos θ ₀ (tan θ ₀ -tan θ)	[kvar]		10,112,521-0	V W/W 45231	変圧器の種類 負荷の種類
NO.3三相変圧器	100	0. 27	夏期 負荷 冬期 負荷	89. 40 69. 40 91. 20 70. 40	20. 0 20. 8	20. 8	0. 80	0. 98	0. 438	9. 1				6kV 油入 3φ 電動機 C無し
NO. 4三相変圧器	150	0. 34	夏荷冬荷	128. 00 110. 50 129. 60 112. 30	17. 5 17. 3	17.5	0. 80	0. 98	0. 438	7.7		▼ 周波数 60Hz	合計容量 95.7 [kvar]	6kV 油入 3φ 電動機 C無し
NO.5三相変圧器	500	0. 75	夏荷冬期	415. 00 280. 00 415. 00 280. 00	135. 0 135. 0	135. 0	0. 80	0. 98	0. 438	59. 1		コンテ゛ンサの種類 高圧コンテ゛ンサ	[NVGI]	6kV 油入 3φ 電動機 C無し
	1,000 ~1,500	調査値を 手入力	夏期 負荷 冬期									直列リアクトルのリアクタンス		
			夏負馬									6%		
	小計②	1. 36	外門	I					小計④	75. 90				
備考 三相負荷容量 <i>0</i>		_	ı	上段	上段:補正負荷						cosθ (tanθ _o —		I	

下段 下段:上段のうちインバータ運転補正負荷容量

注 * 力率改善を考慮する補正負荷容量=補正負荷容量-インバーク運転補正負荷容量

年 月 日

直流電源装置計算書(1/4) 建物名称 ECO労師ビル新築工事 【鉛蓄電池】 1. 用涂 非常用照明用と受変電設備用を共用 2. 蓄電池負荷特性 1) 非常照明器具の放電電流 I。[A] 及び放電時間 T。[分] $I_a =$ 器具(ランプ)のW数×個数 ΓA٦ 76 T_a= 10 [分] 10分又は30分 2) 監視用放電電流 I_b [A] 及び放電時間 T_b [分] $I_{\rm b} = \boxed{2}$ [A] T_b= 10 [分] 10分又は30分 3) 遮断器操作用放電電流 Ic「A]及び放電時間 Tc「分] $I_{c} = \boxed{2}$ [A] T_c= 0.2 [分] 10分又は30分 (備考) 用途が非常用照明用の場合、 $I_{b} = I_{c} = 0$

> 受変電設備の場合、 $I_a = 0$

- 3. 蓄電池容量の算出
 - 1) 容量換算時間 K [h] の算出

HSEに比べて長寿命形です。

- i)蓄電池種類 鉛蓄電池 、形式 MSE 形
- ii)許容最低電圧 [V] セル当たり許容最低電圧 1.76 [V/セル]
- 5 [℃] iii) 最低蓄電池温度

温度は選択です。温度により換算時間は変わります。

iv) 容量換算時間 $K_{a\sim c}$ [h]

$$K_{a} = K_{b} = 0.79$$

$$K_{c} = 0.57$$

直流電源装置計算書(2/4)

建物名称 ECO労師ビル新築工事

年 月 日

2) 蓄電池容量の算出

$$C = \frac{1}{I_{c}} \{K_{a}I_{a} + K_{b}I_{b} + K_{c}I_{c}\}$$

ここに、 C: 表2-2の温度条件における必要蓄電池容量 [Ah]

L: 保守率=0.8

 $K_{\rm a}\sim K_{\rm c}$: 容量換算時間 [h]

I _a∼ *I* _c: 放電電流 [A]

$$C = \frac{1}{0.8} \{ \boxed{0.79} \times \boxed{76} + \boxed{0.79} \times \boxed{2} + \boxed{0.57} \times \boxed{2} \}$$

$$= \boxed{78.5} [Ah]$$

4. 蓄電池容量の設定

C [Ah] の直近上位での値を設定蓄電池容量とする。

設定蓄電池容量= 100 [Ah]以上

100[Ah]迄はHSE、100[Ah]~500[Ah]迄はMSEとなります。

5. 整流装置の定格直流電流の決定

定格直流電流 > <u>設定蓄電池容量 [Ah]</u> + 監視用放電電流 [A]

整流装置の定格電流は、直近上位で次表の値とする。

定格直流電流= 10 [A]

直流電源装置計算書(3/4)

建物名称 ECO労師ビル新築工事

年 月 日

【リチウム二次電池】

1. 用途

非常用照明用と受変電設備用を共用

- 2. 蓄電池負荷特性
- 1) 非常照明器具の放電電流 I_a [A] 及び放電時間 T_a [分]

$$I_{a} = \frac{$$
器具(ランプ)のW数×個数 $}{100} = \frac{40 \times 190}{100} = 76$ [A]

2) 監視用放電電流 I_b [A] 及び放電時間 T_b [分]

$$I_{b} = \boxed{2} \quad [A]$$

$$T_{b} = \boxed{10} \quad [\%]$$

3) 遮断器操作用放電電流 I。[A] 及び放電時間 T。[分]

$$I_c =$$
 2 [A] $T_c =$ 0.2 [分]

(備考) 用途が非常用照明用の場合、

$$I_b = I_c = 0$$

受変電設備の場合、
 $I_a = 0$

- 3. 蓄電池容量の算出
- 1) 容量換算時間 K [h] の算出
- i) 蓄電池種類

ii)許容最低電圧

[V] セル当たり許容最低電圧 [V/セル]

iii) 最低蓄電池温度

 $[^{\circ}C]$

セル数は製造メーカーにより 異なるため記入していません。

iv) 容量換算時間 $K_{a\sim c}$ [h]

$$K_{a} = K_{b} = 0.25$$

$$K_{c} = 0.25$$

直流電源装置計算書(4/4)

建物名称 ECO労師ビル新築工事

年 月 日

2) 蓄電池容量の算出

$$C = \frac{1}{L} \left\{ K_{a} I_{a} + K_{b} I_{b} + K_{c} I_{c} \right\}$$

ここに、 C: 表2-2の温度条件における必要蓄電池容量 [Ah]

L: 保守率=0.8

 $K_{\rm a}\sim K_{\rm c}$: 容量換算時間 [h]

I a∼ *I* c: 放電電流 [A]

$$C = \frac{1}{0.8}$$
 { 0.25 × 76 + 0.25 × 2 + 0.25 × 2 } = 25.0 [Ah]
2,500 [Wh] = 公称電圧 100 ** [V] × 25.0

※ リチウム二次電池の公称電圧は、製造メーカーにより異なるため、参考数値である。

4. 蓄電池容量の設定

C [Ah] の直近上位での値を設定蓄電池容量とする。

設定蓄電池容量= 45 [Ah]以上

容量は45,75,90,150,180,225[Ah]で自動で算出されます。

5. 整流装置の定格直流電流の決定

整流装置の定格電流は、直近上位で次表の値とする。

非常用 発電設備計算書について説明します。

目次に下記4種類の計算書名があります。

- (1) 最大最終方式(防災負荷又は一般負荷のみ)シート(1/10~9/10)
- (2) 最大最終方式(防災負荷と一般負荷)防災シート(1/10~9/10)、一般シート(2/10~9/10)
- (3) 順次投入方式(一般負荷簡易式)シート(1/18~17/18)
- (4) 順次投入方式 (一般負荷一般式) シート (1/20~19/20)
- (5) 燃料槽算定 上記(1)~(4)の末尾に用意しています。

(A)

- ・スプリンクラーポンプ
- 消火栓ポンプ
- 排煙機
- ・非常用エレベータ
- 発電機用補機
- ・ 発電機室給排気ファン

消防法、基準法等法規上必要な設備で

防災負荷と呼ばれています。=(A)とします。

(B)

- 給水ポンプ
- 排水ポンプ
- 保安用照明
- ・保安用コンセント
- 通信機器
- ・空調機 (エアコン含む)

設計者の判断で必要とする設備で

一般負荷と呼ばれています。=(B)とします。

- ・(A)のみ、(B)のみ又は(A)と(B)の両方共を発電機回路とする場合は(1)で算定します。通常の算定は(1)のシートで十分です。
- ・(A)と(B)を分けて計算し大きい方を選択する場合は(2)のシートになります。(1/10)の計算書で防災負荷でいくら、一般負荷でいくらと算出されて大きい負荷の出力で発電機出力が決定されます。最初からどちらかが大きくなるのかが明確にわかっている場合は大きい方を(1)のシートで計算すればよろしいかと思います。わざわざ(2)のシートを使う必要はありませんがクライアントから比較を求められた場合はこの(2)のシートで計算します。

※ 注 意

- ・(A)と(B)を分けて計算し、大きい方を選択する場合で注意すべきことは、非常時には自火報連動又は法規上必要な防災機器が運転した場合は その運転信号によって一般負荷は遮断できることが条件となります。
- ・(3)のシートについて説明します。グループが3つあったとします。そのグループが1~3に順次投入された場合の発電機出力を求めます。
- ・(4)のシートは(3)とよく似ていますが(3)の場合は 1 枚目で負荷需要率を 1.0 と手入力しますが(4)の場合は (8/20)のシートで設定需要率を手入力したのが 1 枚目に自動で入ります。(3)でも(4)でも結果は余り変わりませんが若干の違いは出ます。

発電機入力例-1

防災負荷(A)と一般負荷(B)の両方を発電機回路とした場合について説明します。一般的にはこのような例の算定が多いと思います。目次の<u>最大最終投入方式</u>(防災負荷、又は一般負荷のみ)で計算します。入力例は全てを防災負荷として算定します。

- (1)まず(1/10)の白枠のみ手入力します。黄色はドロップダウンリストより選択、グリーンとグレー枠は自動計算されますので直接の手入力はしないで下さい。
- (2) 原動機の種類は(1/10)シートの下表を参考に選択します。発電機出力が 100kVA 程度になるであろうとすると過給機付を選択します。80kW 以下と思われる場合は無過給を選択します。尚、無過給を選択して(8/10)、(9/10)に順次進んでいくと#VALUE!が出た場合は(1/10)に戻って過給機付に選択し直して下さい。(8/10)、(9/10)の VALUE!が消えます。
- (3) (1/10)の白枠、リスト選択が完了したら(4/10)を先に計算してから(2/10)に戻ります。(4/10)は同時始動用です。 防災負荷は複数台の負荷がドーンと一発で入ることを前提にしています。同時始動がない場合は(4/10)はいりません。
- (4) 負荷名称はダブルクリックして手順に従い、入力していきます。直接入力は不可です。
- (5) (4/10) を順次説明しますとスプリンクラーポンプは誘導電動機、Y- Δ (最大)を選択しています。Y- Δ で3台目からは(その他)を選択しますが2台迄は(最大)です。排煙機も誘導電動機、Y- Δ (最大)で選択します。
- (6) 消火栓ポンプは誘導電動機、始動方式はラインスタートを選択しています。入力例ではこれらの3台の合計39kWが同時に入ることになります。
- (7)(2/10)に戻って下さい。(4/10)の同時起動分を表示する方法を説明しますと左上の同時始動入力をクリックすると入力するセル(負荷名称) を選択して [0K] 釦をクリックして下さいの表示が出ますので、(2/10)の負荷名称最上段セルをクリックしてから 0K 釦を押すとスプリンクラーポンプ~消火栓ポンプ迄が自動入力されます。ここでも出力合計 39kW が一発で同時に始動しますよと入っております。

- (8) 続いて発電機回路としたい負荷を順次ダブルクリックしながら案内に従い入力します。給水ポンプ、排水ポンプ、発電機室ファンは誘導電動機とラインスタートを選択しました。保安用照明は電灯・差込を選択し不平衡負荷にの欄にも入力します。ここでは平衡がとれているものとしています。
- (9)次に(5/10)、(6/10)はとばして(7/10)で右下のドロップダウンリストより選択します。ここでは1とするを選択しました。
- (10)(8/10)では、ほぼ計算が完了した状態になっていますが、エレベータ無と下部黄色ドロップダンリストより 1 を選択しますと定格出力 150kVA と表示されます。それでよければ 150 と手入力します。将来増設を考慮するのであれば 150 以上としてもよいですが、この確認 の意味で入力した値が (9/10)に連動しますので注意して下さい。
- (11)(9/10)では(8/10)で150と入力した値が下部の発電機出力に入力されています。エレベータ無しを選択すると残っているのは原動機定格 出力なので整合率に納まるよう入力します。発電機出力より原動機出力が少し大きくなるのが一般的です。ここでは180と手入力してい ます。これで計算は完了です。
- (12) 計算は完了したしたので(1/10)に戻りますと全てが自動入力されています。

ワンポイントアドバイス

- 1、(4/10)で同時始動入力欄は10台迄です。それ以上有る場合は小さい容量を1台としてまとめて下さい。 負荷名称が異なっても2.2kWが4台ある場合は、その他機器計と名前を付けて8.8kWというようにまとめて下さい。 注意することはまとめた合計値が最大(例えばスプリンクラー18.5kW)を超えないようにまとめて下さい。
- 2、(2/10)は同時始動にプラスして順次入力していきますので入力行挿入でいくらでも増やすことは可能です。

非常	用発電設備計算	書(1/10)				計算に関	係しません。	防	災負荷運転	時
	建物名称 E	<u>CO労師ビル新</u>	<u>築工事</u>		年 月 日			最为	大最終投入力	方式
1. 特性	上等			2. 非常	用発電設備		計算に関	貫係しません	' o	
(1)	対象負荷機器 2/10 による。			(1)	種類	屋	陸内キュービクル	式長時間形(ラ	ジエータ搭載式	t)
(2)	発電機 特性			(2)	発電機出力	G				
	xd'g=	0. 25	[負荷投入時における電圧降下を評価したインピーダンス]		定格出力	150	kVA	極数	4	極
	$\Delta E =$	0. 25	[発電機許容電圧降下]		定格電圧	200	V	定格周波数	60	Hz 計算に関係 しません。
	$KG_3 =$	1. 5	[発電機の短時間過電流耐力] (KG3=1.5(標))		定格力率	0.8		定格回転数	1, 500	min ⁻¹
	$KG_4 =$	0. 15	[発電機の許容逆相電流における係数] (KG4=0.15(標))	(3)	原動機出力	E		計算に関係	します。	
	$C_{p}=$	1. 06	[原動機出力補正係数]		原動機の種	重別		ディーゼル機関(過給機付)	
	$\eta_{g} =$	0.87	[発電機効率]		定格出力	180	kW	定格回転数	1, 500	min^{-1}
(3)	原動機 特製				使用燃料	軽油				
	a=	0. 18	[原動機の仮想全負荷時投入許容値]							
	ε =	0. 70	[原動機の無負荷時投入許容値]	(4)	整合率	MR	1. 31	G:	発電機出力	[kVA]
	$\gamma =$	1.1	[原動機の短時間最大出力]			MR = -	Е	$\cos \theta_{g}$:	発電機の定	格力率(0.8)
(4)	発電機 特製					17111	$G \cdot \cos \theta_{g}$	η_g :	発電機効率	
	D =	1. 0	[負荷の需要率]				ηg	E:	原動機出力	[kW]
	d=	1.0	[ベース負荷の需要率]	3. 発電	・ 意装置の出力決定	飳				
	_		_				発電機出力	_	原動機出え	
	(標): 公共建築コ	E事標準仕様書	(電気設備工事編)第5編 第1章第1節~第4節				150	[kVA]	180	0 [kVA]
			の計算が完了したら自動入力されますので しないで下さい。							

(様式 電-14-2)

非常用発電	ご 設備	計算書	售 (2/1	10)		建4	<u> 物名称</u>	ECO労師ビル	新築工事	<u> </u>		左	F 月 日			防災負荷	丁運転時		
4. 負荷表			(注)同	同時始重	か複数	付ある	場合は	(4/10) から	る入力し	て下さい。						最大最終	投入方式	t	
負荷名称	負荷記号	台数	換算を必 要とする 入力又は 出 カ [kVA, kW]	換算	個々の負 荷機器の 出力 m _i [kW]	始動 方式	M_2 の選 $rac{ks}{Z'm}$	$\frac{\mathbb{E}(RG_2\mathbb{H})^*}{\frac{ks}{Z'm}}\timesm_i$	ks Z'm	M_3 の選定($\frac{ks}{Z'm}$ -1.47	$\left(\frac{ks}{Z'm} - 1.47\right)$ ×m _i		$\frac{ks}{Z'm} \cos \theta_{s} \times m_{i}$		r_3 の選定(R ks $rac{Z'm}$ cos θ_s -1	$\left(\frac{ks}{Z'm}\cos\theta_{s'}\right)$	R-S	下平衡負 [kW] 	荷 T-R
スプリンクラーポンプ		1	_		39		4. 08	159. 1	4. 29	2. 82	110.0	2. 04	79. 6	2. 21	1. 21	47. 2			
排煙機			_																
消火ポンプ			_																
非常用EV	EV	1	18. 5	1. 224	22. 6	交流 VVVF	0. 00	0.0	2. 94	1. 47	33. 2	0.00	0.0	2. 35	1. 35	30. 5			
直流電源装置	RF1	1	1.0	1. 000	1	ラインスタート	1. 47	1.5	1. 47	0.00	0.0	1. 25	1.3	1. 25	0. 25	0.3			
発電機室ファン	1	2	0.4	1. 000	0.8	ラインスタート	7. 14	5. 7	7. 14	5. 67	4. 5	5. 00	4. 0	5. 00	4. 00	3. 2			
保安用照明		1	6. 0	1. 000	6		1. 00	6.0	1. 00	-0. 47	-2. 8	1.00	6. 0	1. 00	0.00	0.0	2. 0	2. 0	2. 0
	٦	こだり	†参考に	負荷入	カシー	トで手刀	カして	います。											
			表示 と	≒ができ (4∕10	ますので)がま	負荷名 とまって	称最上 こ入力で	段セル(ここ	ではス 水ポン	、プリンクラ プ以降はダ	称)を選択して 5 一ポンプ)を ブルクリックし	クリックし	てからOKst	印を押す	0				
	3 - 1-	-	00.0	1 000	00.0		ko		ke			ko		ko					
エレ	ベータ	1	22. 6	1. 000	22. 6		Z' _m	・m _i の値が	$\left(\frac{\kappa s}{Z'}\right)$	-1.47)	・m _i の値が	$\frac{ks}{Z'_{m}} \cos \theta s$	$\cdot m_i \mathcal{O}$	$\left(\frac{\kappa s}{Z'_{m}}\right)$	$\cos \theta_s$ -1)	・m _i の値が	2. 0	2. 0	2. 0
合	計		負荷出	力合	計値	K	最大と	なる		となる		値が最大と		最大とな	る		最大值		2. 0
及び選	定		_	_		7	$m_i = \Lambda$		m _i =1		1	$m_i = M_2$		$m_i = M'_3$		1	次の値		2. 0
(/共立) (1) 	2 hh 1+: 41			$\Sigma \mathbf{m_i} =$	69. 4]	M_2 =	39. 0	$M_3=$	39. 0	<u> </u>		39. 0		39.0	+ + m , 7	最小值	[: C	2. 0

(備考) (1) 換算係数は、(6/10) による。

注 * 始動瞬時・始動中における値のうち大きい方の値を用いる。

- (2) K_s 、 Z'_m 、 $\cos\theta_s$ の値は、(6/10)、(7/10) による。
- (3) エレベータ及び電動機で同時始動する負荷がある場合は、(3/10)、(4/10) により集計し、一つの負担とみなす。

非常用発電	直設備計 算	算書 (3/10)			建物	勿名称	ECO労師ビ	ル新築工事	·				年	月日			财	5災負荷運転	持
5. 負荷表(エ	レベータ同	同時始動	計算用)															最	大最終投入力	式
													計	算 値						
			換算を必		① 個々の	,,		始	動瞬時						始	動中	I			
	負荷		要とする	出力	負荷機器	始動						RG	$_{2}$ RE_{2}	Ħ		RG_3 用			RE_3 用	
負荷名称	記号	台数	入力又は出力	換算係数	の出力	方		2		3		4		5		6		7		8
			[kVA, kW]	小双	m _i	式	ks	ks	kscos θ s	kscos θ _s	ks	ks	kscos θ s	-	ks	ks	ks	ks	ks $\cos \theta$ s	kscos θ _s
					[kW]		Z'm	·m _i	Z'm	•m _i	Z'm	·m _i	Z'm	Z'm·m _i	Z'm	$\overline{Z'm}$ · m_i	Z'm	·m _i	Z'm	•m _i
i																				
										こ使用します	0									
				1日(の場合は	_0):)— FI	こ入力必要	めりません	∿。										
				• 1台(の場合は	給水力	ポンプ.	排水ポン	プと同じ。	ように負荷名	称に									
					入力すれ				,,,,,											
#- 31			1.6 -	- 20-			D.@		7.0		P. (1)		7.6		D. @		D.@		7.0	
集計			M_{p} =	$\Sigma = \Sigma = $			Σ2=		Σ ③=		Σ ④=		Σ ⑤=		Σ ⑥=		Σ ⑦=		Σ ⑧=	
	$M_{p} =$						_1	$=\frac{1}{M_{\mathrm{p}}}\cdot\Sigma$	2)		_1	$=\frac{1}{M_{\mathrm{p}}}\cdot\Sigma$	4)		_1	$= \frac{1}{M_{p}} \cdot \Sigma \textcircled{6}$	_1_	$=\frac{1}{M_{\mathrm{p}}}\cdot\Sigma$	8)	
RG_2 : Z	Z' _{mp} =						Z'm	M_{p}	2		Z'm	M_{p}	•		Z' m	M_{p}	Z'_{m}	M_{p}	•	
Σ	②と Σ ④ を	比較し	、大きい値	の方の2	Z'mpとする	00		1				1				1		1		
RG_3 : Z	Z' _{mp} =		1					=	≒×l				≒×l		=				≒×	
				の方の2	Z'mpとする) ,		1				1				х		1		
	Z' _{mp} =					1		=				=						=		
.—	□●		1															L	Z (0)	
定とする。		0,,,,	. (2.2.2)	- E mp	_ 000 0 sp			$\cos \theta_{sp} =$	$\frac{2 \odot}{\Sigma \odot}$			$\cos \theta_{sp} =$	$\frac{2 \odot}{\Sigma \odot}$					$\cos \theta_{sp} =$	$\frac{2 \odot}{\Sigma ?}$	
RE_3 : Z	Z' _{mp} =		cc	s θ sp=												1				
Σ@とΣ	⑦を比較	し、大き	い値の方の	Z'_{mp}	L cos θ sp							=			=			=	=	
とする。																				
(備考) (1) A											4 11. :=	-t- t								
					分負荷投力)による		負荷の相	当始動イン	ビーダンス	$\cos \theta_{sp}$:分	負荷投入	、時の相当始!	動力率							

非常用発電	『 設備計算	拿書 (4/10)					建物	名称	ECO労師 E	ル新築工事	<u> </u>				年	月	<u>B</u>		防	災負荷運転	<u>計一14-4)</u>
6. 負荷表(同	時始動計算	〔用)(コ	エレベータ	は除く)																最大	、最終投入	方式
	4		換算を必 要とする	出力	① 個々の	始	P. ($G_2 R G_3$	始	動 瞬 <i>R E</i>		Ħ		計 RG:	算 ₂ RE ₂ ,	値	始	動 「 <i>R G</i> ₃ 用	中		<i>R E</i> 3用	
負荷名称	負荷記号	台数	入力又は 出 力 [kVA, kW]	換算	負荷機器 の出力 m _i [kW]	動方式	$\frac{\text{ks}}{Z'm}$	$\frac{\frac{ks}{Z'm} \cdot m_i}{}$	ks Z'm	$\frac{ks}{Z'm} \cdot m_i$	$\frac{ks\!\cos\theta}{Z'm}$	$\frac{4}{\frac{ks\cos\theta}{Z'm}} \cdot m_i$	ks Z'm	$\frac{ks}{Z'm} \cdot m_{i}$	kscos θ s	6	ks Z'm	$\frac{ks}{Z'm} \cdot m_{i}$	ks Z'm	$\frac{ks}{Z'm} \cdot m_i$	$\frac{ks\!\cos\theta}{Z'm}$	$\frac{\text{ks}\cos\theta}{Z'm} \cdot m_i$
スプリンクラーポンプ		1	18. 5	1. 000	18. 5	Υ-Δ	2. 38	44. 0	2. 38	44. 0	1. 19	22. 0	4. 76	88. 1	2. 38	44. 0	4. 76	88. 1	4. 76	88. 1	2. 38	44. 0
排煙機		1	15. 0	1. 000	15	Υ-Δ	2. 38	35. 7	2. 38	35. 7	1. 19	17. 9	4. 76	71.4	2. 38	35. 7	4. 76	71. 4	4. 76	71. 4	2. 38	35. 7
消火ポンプ		1	5. 5	1. 000	5. 5	ラインスター ト	7. 14	39. 3	7. 14	39. 3	4. 29	23. 6	0.00	0.0	0. 00	0.0	1. 47	8. 1	1. 47	8. 1	1. 18	6. 5
									. ,	,		上げて(2/ 要ありません	, .	こ戻ります	; .							
			$M_{p} =$	Σ ①=	39		Σ2=	119. 0	Σ ③=	119. 0	Σ ④=	63. 5	Σ (5) =	159. 5	Σ 6 =	79. 7	Σ ⑦=	167. 6	Σ (8) =	167. 6	Σ ⑨=	86. 2
Σ ② RG_3 : Z 選 Σ ②	M_p = Z'_{mp}	:較し、: 0. 233 :較し、:] 大きい値の)方の <i>Z</i>	•	2	$\frac{1}{Z'_{m}}$ $= \frac{1}{[X'_{m}]}$	$= \frac{1}{M_{p}} \cdot \Sigma @$ $\frac{1}{39.0}$ 119.0	1 Z'm	$= \frac{1}{M_{p}} \cdot \Sigma$ $= \frac{1}{39.0}$ $= \frac{1}{0.320}$	X 119	0	1 Z'm	$= \frac{1}{M_{p}} \cdot \Sigma$ $= \frac{1}{39.0}$ $= \frac{1}{0.248}$	× 159	. 5	1 Z'm	$= \frac{1}{M_{p}} \cdot \Sigma \overline{\mathcal{O}}$ $= \frac{1}{39.0} \times \boxed{167.6}$	1 Z'm	$= \frac{1}{M_{p}} \cdot \Sigma$ $= \frac{1}{39.0}$ $= \frac{1}{0.233}$	× 167.	6
とする RE3: 2 Σ③と とする。 (備考) (1) M	$Z^{\prime}_{mp} = egin{array}{c} & & & & & & & & & & & & & & & & & & &$	0. 233 較し、大 、cos (時の相] co できい値の 9 _{sp} は、次に 当出力	s θ _{sp} = 方の Z' による。 <i>Z</i> ' _{mp}	0.514 _{mp} とcosθ _s : 分負荷投	p	= [1 0.328 国当始動イン		$\cos \theta_{sp} = \frac{63.9}{119.0}$	0.5	荷投入時の相		$\cos \theta_{sp} = \frac{79.1}{159.5}$	7 = 0.5	00	=	1 0. 233		$\cos\theta_{sp} = \frac{86.2}{167.6}$	0.5	14

非常用発電詞	非常用発電設備計算書 (5 / 10) <u>建物名称</u> <u>ECO労師ビル新築工事</u> <u>年 月 日</u> 防災負荷運転時													
7. 負荷表														
		十 台数	換算を必要	力率	定格出力	始 方 又 制 方 式 は 御 式		虐	高調波発生負荷 <i>0</i>)出力合計			アクティブ フィルター	
負荷機器名称	記号		とする入力 又は出力 [kVA、kW]				$R_{i}[kW]$	同相 ②	移相 ③	単相全波 整流機器 の出力値 [kW]	6パルス 整流機器 の出力値 [kW]	12パルス 整流機器 の出力値 [kW]	の定格容量 [kVA] ⑦	
非常用ELV	EV	1	18.5		18 5	交流VVVF	① 18. 5	18. 5		0.0	<u> </u>	⑥ 0. 0	0.0	
直流電源装置	RF1	1	1.0	0. 850	0. 9	~»	0. 9	0. 9		0. 9	0. 0	0. 0	0. 0	
	・この様式は許容逆相電流出力係数RG4を算出するためにHとRAFを求めるものです。 ・入力例はアクティブフィルターを定格容量を0としていますが数値を入力すると計算書(8/10)の値は小さくなります。 ・高調波は発電機出力に大きく関係します。特に空調エアコンは高調波を発生しますのでこの(5/10)で計算しますがエアコンにアクティブフィルター取付て対策を行っていれば、このシートは特に入力する必要はありません。													
$R=\Sigma$ ① Σ ②= 19.4 Σ ③= 0.0 $R_1=\Sigma$ ④ $R_3=\Sigma$ ⑤ $R_6=\Sigma$ ⑥ $ACF=\Sigma$ ⑦ $S=0.0$ 0														
	$H = \text{hb} \cdot \sqrt{0.355 \cdot R_6}^2 + \{ (0.606 \cdot R_3 + 0.656 \cdot R_1) \cdot \text{hph} \}^2$ $= \boxed{0.64} \times \sqrt{(0.355 \times \boxed{0.0})^2 + \{ (0.606 \times \boxed{18.5} + 0.656 \times \boxed{0.9}) \times \boxed{1.0} \}^2} = \boxed{7.55}$													
hb= $\frac{1.3}{2.3-}$	$\frac{R}{K}$	2.3-	3 19. 4 69. 4	0. 64						hpl	n : 移相補正			
	K 69.4 $RAF: アクティブフィルタ効果容量 [kVA]$ $ACF: アクティブフィルタウスを発音 [kVA]$ $ACF: アクティブフィルタ定格容量 [kVA]$ $ACF: アクティブフィルタ定格容量 [kVA]$ $ACF: POティブフィルタに格容量 [kVA]$ $ACF: POティブフィルター15kVAを入力するとRAFが0から6.04に 変わって (8/10) のRG4が0.73から0.15と小さくなります。$													

非常用発電設備計算書(6/10)

建物名称 ECO労師ビル新築工事

年 月 日

防災負荷運転時 最大最終投入方式

8. 出力 (m_i) の算定

出力(m_i) は、個々の負荷機器の定格表示に応じて次により求める。

① 一般電動機(誘導機)

 $m_i = F_i \cdot 電動機定格出力[kW]$

ここに、 F_i : 出力換算係数……1.0

② エレベータ

$$\mathbf{m_i} = (U_{\mathbf{v}}/\mathbf{n}) \cdot \sum_{i=1}^{\mathbf{n}} E_{\mathbf{v}i} \cdot V_i$$

ここに、 U_v : エレベータの台数による換算係数

n: エレベータの台数

(発電機管制運転を行っているエレベータを見込む。)

E_{vi}: エレベータの制御方式によって定まる換算係数

交流帰還制御方式、インバータ制御方式の場合……1.224

油圧制御方式の場合……2,000

V: エレベータの巻上電動機の定格出力[kW]

③ 整流装置

 $\mathbf{m_i} = F_i \cdot V \cdot A / 1,000 \text{ [kW]}$

ここに、 F_i : 出力換算係数……1.0

V: 直流側の定格電圧[V]

A: 直流側の定格電流 [A]

④ 白熱灯·蛍光灯

 $\mathbf{m}_i = F_i \cdot$ 定格消費電力 [kW]

ここに、 F_i : 出力換算係数……1.0

LED照明器具は、定格消費電力、

白熱灯は、定格消費電力、蛍光灯は、定格ランプ電力とする。

⑤ 差込負荷

 $m_i = F_i \cdot L_i / 1,000 \text{ [kW]}$

ここに、F: 出力換算係数……1.0

L: 非常用コンセント(単相)の定格電圧[V]×定格電流[A]通常は、100 V 15 A とする。

⑥ 定格が出力[kVA] で表示されている機器(IJPS)

 $\mathbf{m}_{i} = F_{i} \cdot C_{i} \cdot \cos \theta_{i} \text{ [kW]}$

ここに、F: 出力換算係数……1.0

C ∴ 定格出力[kVA]

cos θ; 負荷の力率……0.9 (ただし、並列冗長運転の場合、並列冗長係

数
$$\frac{n-1}{n}$$
 を乗ずる。 n はUPS のセット数。)

⑦ その他の機器(効率(nL)が0.85 より著しく小さい機器の場合。)

 $\mathbf{m}_{i} = (\eta L / \eta L_{i}) \cdot K_{i} [kW]$

ここに、n L: 負荷の総合効率……0.85

η L;: 当該負荷の定格時効率

K; 負荷出力[kW]

9. エレベータ台数による換算係数

	台数による	台数 (n)	1	2	3	4	5	6	7	8	9	10
ı	換算係数	U_{v}	1.00	2.00	2.70	3.10	3. 25	3.30	3.71	4.08	4. 45	4.80

10. エレベータの緒元値(始動時定数)

負荷	制御方式	始 動 瞬 時				始 動 中										
		ks	Z'm	ks Z'm	ks —— cos θ s Z'm	RG_{2} , RE_{2}				RG_3			RE_3			
						ks	Z'm	ks Z'm	$\frac{ks}{Z'm}\cos\theta$	ks	Z'm	ks Z'm	ks	Z'm	ks Z'm	$\frac{ks}{Z'm}\cos\theta$
工	交流帰還	1.0	0. 204	4.90	3. 92	0	0.204	0	0	1.0	0.204	4.90	1.0	0.204	4.90	3.92
ベー	交流 VVVF	0	0.34	0	0	0	0.34	0	0	1.0	0.34	2.94	1.0	0.34	2. 94	2. 35
g	油圧制御	1.0	0.4	2.5	1.25	1.0	0.2	5.0	2.5	1.0	0.2	5.0	1.0	0.2	5.0	2.5

計算シートではありません。説明資料です。

非常用発電設備計算書 (7/10) -1 <u>ECO労師ビル新築工事</u>

防災負荷運転時

建物名称 <u>ECO労師ビル新築工事</u>

年 月 日

最大最終投入方式

11. 負荷機器 1 (エレベーターを除く) の計算用緒元値 (始動時定数)

	始				始 動	瞬時							始	動	中				
負	動	R	G_2 , R	G_3		R	E_2 , R	E_3		R	G_2 , R	E_2		RG_3				RE_3	
荷	方式	ks	Z'm	ks Z'm	ks	Z'm	ks Z'm	$\frac{ks}{Z'm}\cos\theta_{s}$	ks	Z'm	ks Z'm	$\frac{\text{ks}}{Z'm}\cos\theta_s$	ks	Z'm	ks Z'm	ks	Z'm	ks Z'm	$\frac{ks}{Z'm}\cos\theta_s$
	ラインスタート (直入 始動)	1.00		8. 33	1.00		8. 33	① 5.00 ② 4.17 ③ 3.33 ④ 2.50	0	0.65	0	0	1. 00	0. 65	1.54	1.00	0.65	1. 54	1. 15
								① 1.67		(最	大定格	出力値のもの	及びそ	の次のタ	定格出力	を持つ	もの)り	以外のも	のの
								2 1.39	0	0.65	0	0	1.00	0.65	1.54	1	0.65	1.54	1. 15
誘	37 A							② 1 11			最	大定格出力値の	りもの及	とびその	次の定権	各出力を	を持つも	₅ の	
導	Y-Δ 始動	0. 333		2.78	0.33		2. 78	③ 1.11 ④ 0.83	0. 67	0. 12	5. 56	① 3.34 ② 2.78 ③ 2.22 ④ 1.67	0. 67	0. 12	5. 56	0.67	0. 12	5. 56	① 3.34 ② 2.78 ③ 2.22 ④ 1.67
電動	リアクト ル始動	0.70	0.12	5.83	0.49	0. 12	4. 08	① 2.45 ② 2.05 ③ 1.63 ④ 1.23					0. 70		5. 83	0.49		4. 08	① 2.45 ② 2.78 ③ 1.63 ④ 1.23
機 * 1	コンドル ファ始動	0.49		4. 08	0.49		4. 08	① 2.45 ② 2.04 ③ 1.63 ④ 1.63	0	0. 12	0	0	0. 49	0. 12	4. 08	0.49	0. 12	4. 08	① 2.45 ② 2.04 ③ 1.63 ④ 1.63
	特殊コン ドルファ 始動	0. 25		2. 08	0. 25		2. 08	0.83					0. 42		3. 50	0.49		4. 08	① 2.45 ② 2.04 ③ 1.63 ④ 1.63
	連続電圧 制御始動	0.12		1.00	0.12		1.00	0.30					1.00	0.34	2.94	1.00	0.34	2. 94	0.88
	VF方式 動機 [*] 1	0	0.14	0	0	0.14	0	0	0	0.14	0	0	1.00	0. 68	1. 47	1.00	0.68	1. 47	1. 25
	送線形 直動機	1.00	0.45	2. 22	1.00	0.45	2. 22	1. 56	0	0.45	0	0	1.00	0. 45	2. 22	1.00	0.45	2. 22	1.56
	電灯・ 込負荷	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0	1.00	0	0	1.00	1.00	1.00	1.00	1.00	1.00	1.00
	UPS	1.00	0.90	1.11	1.00	0.90	1. 11	1.00	0	0.90	0	0	1.00	0.90	1.11	1.00	0.90	1. 11	1.00
生	È流器	1.00	0.68	1.47	1.00	0.68	1.47	1. 25	0	0.68	0	0	1.00	0.68	1.47	1.00	0.68	1. 47	1. 25

備考 ①は5.5 kW未満、②は5.5 kW以上11 kW 未満、③は11 kW 以上30 kW 未満、④は30 kW 以上

注 *1 JIS C 4213「低圧三相かご形誘導電動機-トップランナーモータ」の値とする。

計算シートではありません。説明資料です。

非常用発電設備計算書 (7/10)-2

建物名称 ECO労師ビル新築工事

年 月 日

防災負荷運転時

最大最終投入方式

11. 負荷機器(エレベータを除く)同時始動の場合の諸元値

	始				始 動	瞬時									始	動	中					
負	動	R (G_2 , R	G_3		RI	E_2 , R	E_3			$R \in$	\mathcal{F}_2 , R	E_2			RG_3				RE_3		
荷	方	1		ks	1		ks	ks		l		ks	ks		1		ks	1		ks	ks	
	式	ks	Z'm		ks	Z'm	Z'm	co Z'm	os ⊎ _s	ks	Z'm	Z'm	Z'm	cosθ _s	ks	Z'm		ks	Z'm	Z'm	Z'm	cosθ
								① 5.	.00													
	ラインスタート (直入	1.00		7 14	1.00		7.14	② 4.	. 29	0	0.68	0		0	1 00	0.68	1. 47	1 00	0.68	1 47	1	. 18
	始動)	1.00		1.11	1.00		1.11	③ 3.	. 57	v	0.00	v	, ,	1.00	0. 68	1. 11	1.00	0.00	1.47	1	. 10	
								4 2.	. 86													
								① 1	. 67		(最大	定格出	出力値	[のもの]	及びその	の次のタ	定格出え	りを持く	つもの)	以外の	もの	
								2 1	. 43	0	0.68	0		0	L		1.47	ļ			1	1. 18
	Υ – Δ							③ 1	. 19			最大		出力値の	もの及	びその	次の定	格出力	を持つ	もの		
誘	始動	0.333		2.38	0.333		2.38	Ü					1	3. 34							1	3. 34
								④ 0). 95	0.67	0.14	4. 76	2	2.86	0. 67	0.14	4.76	0.67	0.14	4.76	2	2.86
導													3	2. 38							3	2. 3
													4	1. 91							4	1. 90
電			0.14			0. 14			. 45												1)	2. 45
	リアクト ル始動	0.70		5.00	0.49		3.50		. 10						0.70		5.00	0.49		3. 50	2	2. 10
動	/レ 外口 男月							ļ	. 75												3	1. 75
到月									. 40 . 45												(1)	1. 40 2. 45
	コンドル								. 10												2	2. 10
機	ファ始動	0.49		3.50	0.49		3.50		. 75						0.49	0.14	3.50	0.49	0.14	3.50	3	1. 75
								4 1.	. 75	0	0.14	0		0							4	1. 75
	det Tils S .																				1	2. 45
	特殊コン ドルファ	0. 25		1.79	0, 25		1.79	0. 89	ı						0.42		3.00	0.49		3. 50	2	2.10
	始動																				3	1. 75
																					4	1. 75
	連続電圧 制御始動	0. 14		1.00	0. 14		1.00	0. 40							1.00	0.34	2. 94	1.00	0.34	2. 94	1	. 18
	VF方式 宣動機	0	0. 14	0	0	0. 14	0	0		0	0.14	0		0	1.00	0. 68	1. 47	1.00	0.68	1. 47	1	. 25

(備考) ①は5.5 kW未満、②は5.5 kW以上11 kW 未満、③は11 kW 以上30 kW 未満、④は30 kW 以上

12. fv₁、fv₂、fv₃の値

通常の場合は、 \mathbf{fv}_1 =1.0 であるが、次の条件にすべて 適合する場合は、次式による。(\mathbf{fv}_2 、 \mathbf{fv}_3 も同じ)

- ① 電動機は、ディーゼルエンジン又はガスタービン(一軸) とし、ディーゼルエンジンの場合は、K≤35 kW、ガスタービン(一軸) の場合は、K≤55 kW であること。
- ② 全ての防災設備で、下式の M_3 、 M_2 、 M_3 に該当する負荷機器は、軽負荷(ポンプ類) であること。
- ③ *M*/*K* ≥ 0.333 であること。
- ④ 計算式のM₃、M'₂、M'₃に該当する誘導電動機の始動式方式は、ラインスタート、スターデルタ始動(クローズを含む)、リアクトル始動、コンドルファ始動、特殊コンドルファ始動であること。
- ⑤ 最大最終投入方式であること。
- ⑥ 負荷機器にエレベータがないこと。
- ⑦ 負荷機器に分負荷がないこと。

$$fv_1 = 1.000 - 0.12 \times \frac{M_3}{K}$$

$$= 1.000 - 0.12 \times \boxed{ } = \boxed{ }$$

$$fv_2 = 1.000 - 0.24 \times \frac{M_2^2}{M_2^2}$$

$$\mathbf{fv}_2 = 1.000 - 0.24 \times \frac{M'_2}{K}$$

$$= 1.000 - 0.24 \times \boxed{ } = \boxed{ }$$

$$fv_3 = 1.000 - 0.24 \times \frac{M'_3}{K}$$

$$= 1.000 - 0.24 \times \boxed{ } = \boxed{ }$$

fv1, fv2, fv3=

1 とする

リスト選択です。

非常用	月発電設備計算書(8/	/10) 建物名称 ECO労師ビル新築	<u>工事</u>	年 月 日	防災負荷運転時
13. 発電	機出力の計算				最大最終投入方式
	=1.47 $D \cdot sf$ =1.47 \times	1.0 × 1.00 =	sf: 不平衡単相負荷による	線電流の増加係数	RG_1
RG_1	$\Delta P = A + B - 2C =$	$\boxed{ 2.0 } + \boxed{ 2.0 } -2 \times \boxed{ 2.0 } = \boxed{ 0}$	Δ P : 単相負荷平衡分合計出	力値 [kW]	1. 47
κ σ 1	$sf = 1+0.60 \Delta P/K = 1+$	$-0.60 \times$ 0.0 / 69.4 = 1.00			
	$\Delta P/K = 0.00$]≦0.3			
RG_2		$= \frac{1 - \Delta E}{\Delta E} \cdot \text{xd'}_{\text{g}} \cdot \frac{\text{ks}}{Z'_{\text{m}}} \cdot \frac{M_2}{K} = \frac{1 - \frac{1}{2}}{\frac{1}{2}}$	0. 25 0. 25 × 4. 08 ×	39.0 同時始動の合計が 69.4 入力されています。	1.72
RG_3	エレベータの有無 無	$= \frac{fv_1}{KG_3} \left\{ 1.47d + \left(\frac{ks}{Z'_{m}} - 1.47d \right) \cdot - \right.$	$\left.rac{M_3}{K} ight.\}$ 同時始動の合計が 入力されています		RG_3
<i>K G</i> ₃		$= \frac{\boxed{1.0}}{\boxed{1.5}} \times \left\{ 1.47 \times \boxed{1.0} \right. + \left(\boxed{}\right.$	4. 29	=	2. 04
	$= \frac{1}{K} \cdot \frac{1}{KG_4} \sqrt{(H)}$	$(1-RAF)^2 + \{1.47 \cdot (A+B) - 2.94 \cdot C\}^2 \cdot (1-3)^2$	 Bu+3u ²) u:単相負荷不平衡	係数	RG_4
	= <u>1</u> 69.4	0. 15			
RG_{4}	√ (7.55		(2.0)) $-2.94 \cdot 2.0$ } $^2 \times (1-3 \cdot 2.0)$	0.0 +3 · 0.00) =	0.73
	$u = \frac{A - C}{\Delta P} =$				
	$u^2 = 0.00$				
RG	RG_1 , RG_2 , RG_3 ,	RG_4 のうち最大値 RG_4	$G = R G \boxed{3}$ 1. 47 D \(\leq\)	$\leq R G \leq 2.2$	R G 2. 04
	発 電 機 出 力 G [kVA]	$\alpha \cdot RG \cdot K = \boxed{ 1.0} \times \boxed{ 2.04}$	\times 69.4 = 141.6 [kVA] \rightarrow	定格出力 150 [kVA] →	150 [kVA]
(備考)		、 KG_3 、 KG_4 の値は(1/10)による。 Iは(2/10)あるいは(3/10)による。			確認のため再度入力します。
		直及び RG_3 の ks/Z ' $_{\sf m}$ の値は(2/10)による。			(1/10) に自動入力されます。
	(4) K、KAF の値は (5) fv ₁ の値は(7/10)-2 (

								(禄八 龍一14-9)
非常用	発電調	受備計算書 (9 <u>/10)</u>	<u>建物名称</u> ECO労師	<u>ビル新築工事</u>		年 月	日	防災負荷運転時
14. 原動機	と 出力 は とり こうしょう かいしょう かいしょう かいしょ かいかん かいかん かいかん かいかん かいかん かいかん かいかん かいか	の算出及び整合						最大最終投入方式
RE_1		=1.3D=1.3×	1.0 =					R E ₁ 1. 30
	ディーゼ		$= \text{fv}_2 \cdot \{ 1.026\text{d} + \}$	$\frac{1.163}{\varepsilon} \cdot \frac{\text{ks}}{Z'_{\text{m}}} \cos \theta_{\text{s}} - 1.02$	of $\left(\frac{M_{2}}{K}\right)$			R E 2
RE_{2}	ル 機 関		= 1.0 × { 1.026	0.7				
	ガスタービン	エレベータの有無 無	$= fv_2 \cdot \left(\frac{1.163}{\varepsilon} \cdot \frac{1}{2}\right)$	$\frac{ks}{Z'_m} \cdot \cos\theta \mathbf{s} \cdot \frac{M_2^{\prime}}{K} \Big) = \boxed{}$	× (1.163 × [×) =	<i>RE</i> ₂ ディーゼルを選択しているため ここには入りません。
RE_3			$= \frac{fv_3}{\gamma} \cdot \left\{ 1.368d + \right.$	$\left(1.163 \cdot \frac{\text{ks}}{Z'_{\text{m}}} \cdot \cos \theta_{\text{s}} - 1.\right)$	368d) $\cdot \frac{M_3}{K}$ }			RE_{3}
·			$= \frac{\boxed{1.0}}{\boxed{1.1}} \times \left\{ 1.368 \right.$	3× 1.0 +(1.163×	2. 21 - 1. 368× 1. 0	$) \times \boxed{ 39.0 \atop 69.4} \Big\} =$		1.86
RE		RE_1 , RE_2 , RE_3 ,	のうち最大値	RE = RE	$1.3D \le RE \le 2.$. 2		2. 35
原動機定格 <i>E</i> [kW]		$\alpha \cdot RE \cdot K \cdot C_{p} =$	1.0 × 2.35 ×	69. 4 × 1.06 =	172. 9		\rightarrow	180 [kW]以上 (1/10) に自動入力されます。
整合率 <i>MR</i>	₹	$MR = \frac{E}{G \cdot \cos \theta_{g}} \cdot$	$ \eta_{g} = \boxed{ 180 } $ $ \boxed{ 150 } \times \boxed{ 0.8} $	× 0.870 = 1.31	整合率を 1 にする。 整合率を1.5にする。		138 [kW] 207 [kW]	$1 \leq MR \leq 1.5$
非	 常用	発電設備の出力	$G = \boxed{150} [kVA]$	力率= 0.8	E = 180 [kW]以」	E		ル機関(過給機付)
(備考) (1) D 、 d 、 ϵ 、 γ 、 $\cos\theta$ g^0 (2) $RE_3 O$ ks/ Z ' $_{\rm m}$ ・ $\cos\theta$ $_{\rm c}$ (3) ${\rm fv}_2$ 、 ${\rm fv}_3 O$ 値は $(7/10)$ -2 (4) G O 値は $(8/10)$ による			K 、 M ' $_2$ 、 M_3 の値は(2/1 による。	0) あるいは (3/10) による。	あ ^し		てもメーカート	カの方が大きい傾向が 問合せ、カタログ等を

非常用発電設備計算書(10/10)

防災負荷運転時

建物名称 <u>ECO労師ビル新築工事</u>

年 月 日

最大最終投入方式

14. 燃料槽(ただし、設置場所の標高に応じた原動機出力及び燃料消費率を考慮して、 燃料槽を選定する。)

$$Q = \frac{\mathbf{b} \cdot G \cdot \cos \theta_{g} \cdot H}{\eta_{x} \cdot \mathbf{w}} \quad [L]$$

ここに Q:燃料必要量 [L]

b:燃料消費率 [g/(kWh)]

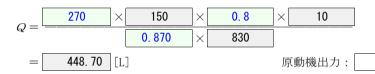
G:発電機出力

150 [kVA]

cosθ。: 発電機の定格力率、0.8とする。

η g: 発電機効率

w:燃料密度 軽油 830 [g/L], A重油 850 [g/L]


軽油

灯油 780 [g/L](ガスタービン発電装置選定時のみ選択可)

H:運転時間 10h,72h 等

10 [h]

180 [kW]

15. 冷却水(ディーゼル機関)

$$W = \frac{E \cdot \mathbf{q} \cdot H}{C \cdot (\mathbf{t}_2 \cdot \mathbf{t}_1) \cdot 10^3} \quad [\text{m}^3]$$

ここに、W: 冷却水量「m³]

H: 運転時間 [h]

E:原動機出力

[kW]

q:機関よりの冷却水放熱量

C: 冷却水の比熱 (清水の場合 $C=4.186\times103$ 「J/(kg·K)])

t₁: 始動開始時の冷却水温度

to:機関出口の冷却水許容最高温度

 $[J/(kW \cdot h)]$

[K] $\lceil K \rceil$

117—]×	×
<i>w</i> –	4. $186 \times 10^3 \times$ ()×10 ³
=	$[m^3]$		

16. 換気量(ディーゼル機関)

ラジエーター搭載式の場合

$$V_1 = \frac{425}{\text{[m}^3/\text{h]}}$$

1) ラジエーター通過風量 V_1 [m³/min]

ラジエーター搭載式以外の場合

245 [m³/h] $V_1 =$

2) 室温温度上昇抑制に必要な空気量 $V_1[m^3/min]$, 表3-4による。 発電機許容最高温度[℃](=40)と外気温度の差が10[℃]以外の場合

$$V'_{1} = \frac{10 \cdot V_{1}}{(t_{1} - t_{2})} \quad [m^{3}/min]$$

ここに、 V'_1 : 補正室温度上昇抑制に必要な空気量[m'/min]

t₁: 発電機室許容最高温度[℃] (=40)

t₂: 外気温度(日最高気温の月別平均値の最高値)「℃]

$$V'_{1} = \frac{10 \times 245}{(40 - 35)}$$
 $= 490$

3) 燃焼に必要な空気量 $V_2[m^3/h]$

4) 換気量の決定

給気量=
$$V_1$$
+ V_2 = $[m^3/h]$
又は
給気量= V'_1 + V_2 = $[m^3/h]$

排気量=
$$V_1$$
 = $[m^3/h]$ 又は

太陽光発電設備計算書

建物名称 ECO労師ビル新築工事

年 月 日

年間の推定発電電力量は、次式による。

年間推定発電電力量= $\Sigma(E_{PM})$

 $E_{PM} = K \cdot P_{AS} \cdot H_{AM} / G_{S}$

ここに、 E_{PW} : 月間推定発電電力量 [kWh/月]

、設計基準

K: 月別総合設計係数 = $K' \cdot K_{PT}$

K':基本設計係数= 0.76 (結晶系、系統連結の場合)

 $K_{PT}: アレイの設置地域に応じた温度補正係数$

P_{AS}: アレイ出力 [kWh]

 H_{AM} : 月積算傾斜面日射量 $[kWh/(m^2\cdot f)] = d \cdot H_s$

d: その月の日数 [日]

HS:アレイ設置地域、方向角、傾斜角に応じた月平均日積算傾斜面目

射量 [kWh/(m²・目)]

 $G_{\rm S}$: 標準状態における目射強度 $[{\rm kW/m}^2]=1~{\rm kW/m}^2$

表 4-1 温度補正係数 (結晶系の場合)

	1月	2月	3月	4月	5月	6月	7月	8月	9月	10月	11月	12月
札幌	1.05	1.04	1.03	1.00	0.98	0.96	0.94	0.94	0.96	0.98	1.01	1.03
仙台	1.02	1.02	1.01	0.99	0.97	0.95	0.94	0.93	0.94	0.97	0. 99	1.01
東京	1.01	1.00	0.99	0.97	0.95	0.94	0.92	0.92	0.93	0.95	0.98	0. 99
新 潟	1.02	1.02	1.01	0.98	0.96	0.94	0.93	0.92	0.94	0.96	0. 99	1.01
名古屋	1.01	1.01	1.00	0.97	0.95	0.94	0.92	0.92	0.93	0.96	0. 98	1.00
大 阪	1.01	1.00	0.99	0.97	0.95	0.93	0.92	0.91	0.93	0.95	0.97	1.00
広 島	1.01	1.01	0. 99	0.97	0. 95	0.94	0.92	0. 92	0. 93	0.96	0. 98	1.00
高 松	1.01	1.01	0.99	0.97	0.95	0.94	0.92	0.92	0.93	0.96	0. 98	1.00
福岡	1.00	1.00	0. 99	0.97	0. 95	0.94	0.92	0. 91	0. 93	0.95	0. 97	0. 99
那覇	0.96	0.96	0.95	0.94	0. 93	0.92	0.91	0. 91	0. 92	0.93	0. 94	0. 95

大陽光発雷設備什样

設置地域	東京
太陽電池種類	結晶系シリコン
アレイ出力 P_{AS} [kW]	10
太陽電池設置形態	屋上架台設置
アレイ方位角	真南
アレイ傾斜角	30°
設備系統	系統連系有
蓄電池	無

10都市より選択 入力

入力 入力

リスト選択

リスト選択 リスト選択

リスト選択

年間推定発電電力量

				<u> </u>		
	その月	アレイ設置地	月積算傾斜面	アレイ設置	月別総合	月別推定発電
	の日数	域、方向角、傾	日射量	地域に応じ	設計係数	電力量
		傾斜角に応じた		た温度補正		
月		月平均日積算		係数		
		傾斜面日射量				$E_{PM}=$
		H_S	H_{AM} =d • H_S	K_{PT}	$K=K' \cdot K_{PT}$	$K \cdot P_{AM} \cdot H_{AM} / G_{S}$
		[kWh/(m²・日)]	[kWh/(m²・日)]			[kWh/月]
1月	31	3. 79	117. 5	1. 01	0. 77	904. 8
2月	28	4. 00	112. 0	1.00	0. 76	851. 2
3月	31	3. 97	123. 1	0. 99	0. 75	923. 3
4月	30	4. 36	130. 8	0. 97	0. 74	967. 9
5月	31	4. 27	132. 4	0. 95	0. 72	953. 3
6月	30	3. 59	107. 7	0. 94	0. 71	764. 7
7月	31	3. 78	117. 2	0. 92	0. 70	820. 4
8月	31	4. 14	128. 3	0. 92	0. 70	898. 1
9月	30	3. 23	96. 9	0. 93	0. 71	688. 0
10月	31	3. 19	98. 9	0. 95	0. 72	712. 1
11月	30	3. 16	94. 8	0. 98	0. 74	701. 5
12月	31	3. 31	102. 6	0. 99	0. 75	769. 5
	•		年間推定	発電電力量[kW/年]	9, 954. 8

地域変更で自動で変わります。

風力発電設備計算書

建物名称 ECO労師ビル新築工事

年 月 日

年間推定発電電力量は、次による。

年間推定発電電力量[kWh] = $\Sigma (P_v \cdot \mathbf{f}_v \cdot 8,760$ [時間])

ここに、 P_V : 風速 V における発電機出力[kW] fv: 風速 V における出現率[%]

風速出現率の算定は、次式による。

$$f_v = (\pi/2) \cdot (V/V^2) \cdot \exp(-(\pi/4) \cdot (VV^2)^2)$$

ここに、V: 風速[m/s]

_ V : 平均風速[m/s]

風力発電装置の条件

/24/7 J J L L 24/1			
風車方式	水平軸形	(プロペラ形)	
基準出力	[kW]	2. 0	
基準出力時の風速	[m/s]	4. 0	全て入力必要です。
カットイン風速	[m/s]	2. 5	
カットアウト風速	[m/s]	9. 5	J
台数	[台]	1	入力

設 置 条 件

队 色 水	11	
平均風速 [m/s]	5. 0	入力

平均風速(気象台で確認)変更により発電量が変わります。

定格出力2.0kWの発電電力量を示したものです。 それ以外であればメーカーに確認して風速における 発電機出力を入力して下さい。

年間推定発電電力量

風速	風速 Vにおける	風速出現率	時間	発電機	発電
V	発電出力 P_{V}	f_V		台 数	電力量
[m/s]	[kW]	[%]	[h]	[台]	[kWh]
1	0. 00	6. 1	8, 760	1	0
2	0. 00	11. 1			0
3	0. 04	14. 2			50
4	0. 10	15. 2			133
5	0. 19	14. 3			238
6	0. 32	12. 2			342
7	0. 52	9. 4			428
8	0. 77	6. 7			452
9	1. 10	4. 4			424
10	1. 50	2. 7			355
11	2. 00	1.5			263
12	2. 00	0.8			140
13	2. 00	0. 4			70
14	2. 00	0. 2			35
15	2. 00	0. 1			18
16	0. 00	0. 0			0
17	0. 00	0.0			0
18	0. 00	0.0			0
19	0. 00	0.0			0
20	0. 00	0.0			0
21	0. 00	0.0			0
22	0.00	0. 0			0
23	0. 00	0. 0			0
24	0. 00	0. 0			0
25	0. 00	0. 0			0
入力 (2.0kWd	の場合です。)	年間推定発電	電力量 [kWh	/年]	2, 948

入力 (2. 0kWの場合です。) ↑ 年間推定発電電力量 [kWh/年]

- ・風速5.0[m/s]時の出現率です。風速の 変更で出現率も変わります。
- ・カットアウト風速15[m/s]を超える場合 は0としています。

交換装置容量計算書(設計条件)	建物名称 <u>ECO労師ビル新築工事</u>	<u>年月日</u>
1. 想定人員、台数	2. 係数	
収容人員* ²	S _a :	$\begin{array}{c c} 0.8 & 0.6 \leq \mathbf{k} \leq 0.9) \end{array}$
会議室等に必要な電話機台数	T: <u>13</u> 台 全ての I S D N 端末について N:	. 4
G3ファクシミリ(ダイヤルイン端末となるもの)台数	S_{fax} : 全ての構内 P H S の子機について N :	6
ISDN端末機(ISDN BRI)台数	S _b : 3 台 N:2.8~12 とし、明確ではない場合は、2 データ通信を行う場合は、6を標準と3	
ISDN端末機(ISDN PRI)台数	S _p : 0 台	, 0.
構内PHSの子機台数	S _{PS} : 15 台	
事務所内の構内 P H S の子機台数 Sps(J):	事務室名 台数 注 *1 入居者の業務内容により決定する。	,
	事務室 (1) 10 *2 入居者の人員の変動等を考慮し決策	定する。
	事務室 (2) 5	
	計算式の説明	
	・人員・台数等仮の数値です。客先と十分会員の力して下さい。	打合せを行った上で

交換装置容量計算書(1/2)

建物名称 ECO労師ビル新築工事

年 月 日

1. 内線数

内線数 (N_{lo}) は次式により算出する。

$$N_{\mathsf{la}} = S_{\mathsf{a}} + S_{\mathsf{fax}}$$

$$N_{\mathsf{Id}} = S_{\mathsf{b}} + S_{\mathsf{p}}$$

$$N_{\sf lp} = S_{\sf ps}$$

ここに、 N_a : アナログ内線数(IP 電話の場合も同様とする。)

 N_{Id} : デジタル内線数

N_{In}: 構内PHS 内線数

Sa: アナログ電話機(一般及び多機能) 台数

 S_{fax} : G3 ファクシミリ(ダイヤルイン端末となるもの) 台数

S_h: ISDN 端末機(ISDN BRI回線) 台数

Sp: ISDN 端末機(ISDN PRI回線) 台数

S_{ps}: 構内PHS の子機台数

 $S_a = \mathbf{k} \cdot S + T$

入居官署と打合せのうえ決定する。

k: 内線算出係数*1

 $(0.6 \le k \le 0.9)$

S: 収容人員*2

T: 会議室等に必要な電話機台数

注 *1 入居者の業務内容により決定する。

*2 入居者の人員の変動等を考慮し決定する。

アナログ内線数 : $N_{la}=$ 240 回線

デジタル内線数 : $N_{\mathsf{Id}} =$ 回線

構内PHS 内線数 : $N_{lp}=$ 回線 2. 構内PHS を導入した場合の構内PHS の基地局(CS) 台数 基地局台数 (S_{cc}) は次式により算出する。

 $S_{cs} = \Sigma (N_{cs}/3) + 事務室カバーエリア外基地局$

ここに、Scs: 施設全体の基地局(CS) 台数

Ncs: 事務室カバーエリアの構内PHS 必要回線数

事務室内の構内PHS 必要回線数 (Ncs) は、次式を用いて 様式 電-17-2「呼量によ る局線数の算出表」により算出(外線数を構内PHSの必要回線と読み替える。) 直近上位の アーランの外線数を選定する。

 $A_{cs(i)} = S_{ps(i)} \cdot N/36$

ここに、 $A_{cs(i)}$: 事務室内の構内PHS 発着基礎呼量[アーラン]

S_{Ps(i)}:事務室内の構内PHS 子機台数

N: 2.8~12 とし、明確ではない場合は、2.8 を標準とする。

データ通信を行う場合は、6を標準とする。

	T		T.		1	r	
	内PHS子機	呼量		構内PHS発進	事務室カバーエリアの	各室基地	也局台数
基 地 局	台数	7.1	基礎呼量		構内PHS必要	H 334	
設置場所	$S_{ps(j)}$	N	A	cs (j)	回線数		
	[台]	[HCS]	[アー	ラン]	$N_{\it CS}$ [回線]	[{	∄]
事務室(1)	10	2. 8		0. 78	3		1
事務室(2)	5	2. 8		0. 39	3		1
			/0.0			/0	
			/36			/3	
全事務室基地局合計							

ここのみ入力必要です。

全事務室基地局合計

事務室カバーエリア外基地局

施設全体の基地極数 S cs[台]

3

交換装置容量計算書(2/2)

建物名称 ECO労師ビル新築工事

年 月 日

3. 外線数

$$M_{\text{la}} = S_{\text{a}} + M_{\text{fax}}$$
 $M_{\text{fax}} = S_{\text{fax}} \cdot (2 \sim 3)$

 $M_{\rm id} = M_{\rm i} + M_{\rm p}$ $M_{\rm i} = \sum (S_{\rm b}) + \sum N_{\rm p} (3 \sim 4)$ $M_{\rm p} = \sum (S_{\rm ps} \cdot N)$

ここに、 M_{la} : 呼量を加味したアナログ換算内線数 M_{ld} : 呼量を加味したデジタル換算内線数

 $M_{\text{fax}}: アナログファクシミリ換算内線数$

M_i: ISDN 端末機換算内線数

 $N:3\sim4$ とし、音声通話、データの送信又は受信のみの場合は1

 $N_{\rm p}$: PRI 回線の必要チャンネル数 $M_{\rm p}$: 構内PHS 端末機換算内線数

 $M_{\text{fax}} = \begin{bmatrix} 9 \\ \times \end{bmatrix} \times \begin{bmatrix} 3 \\ \end{bmatrix} = \begin{bmatrix} 27 \\ \end{bmatrix}$

				1						
	Σ (S	$_{b}\cdot N)$		ΣN_{p})	$M_{p} = \Sigma \left(S_{ps} \cdot N \right)$				
入居 官署	ISDN端末機(IS DN BRI回線) 台数	係数	内線数	ISDN端末機(IS DN PRI回線) 台数	係数	内線数	構内PHS子機 台数	係数内線数		
	S _b [台]	N		S p[台]	N		Sps[台]	N	<u> </u>	
	3 4 12		0		0	15	- 1	15		
					4					
	合 計 12			合 計		0	合 計		15	

$$M_{la} =$$
 231 + 27 = 258
 $M_{ld} =$ 12 + 0 + 15 = 27

4. 発着基礎呼量

 $A_{a}=a\cdot M_{la}/36$ ここに、 A_{a} : アナログ発着基礎呼量[アーラン]

 $A_d = \mathbf{a} \cdot M_{ld}/36$ A_d : デジタル発着基礎呼量[アーラン]

a: 内線当たりの外線通話呼量[HCS]

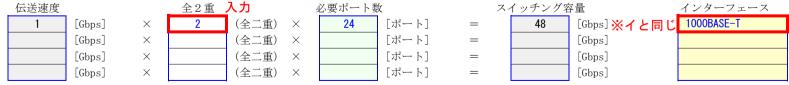
明確ではない場合は、2.8 [HCS] を標準とする。

 $A_{a} =$ 2.8 \times 258 / 36= 20.07 / 7- $\sqrt{2}$ / 36= 2.10 / 7- $\sqrt{2}$

アナログ外線数: $N_{\text{cota}} =$ 26 回線 デジタル外線数: $N_{\text{cotd}} =$ 5 回線

5. インタフェースの決定

イ	ンターフェース	ス種類	実数 / 容量数	備考
	内	線	240 / 300	
内	ISDN 回線	BRI	3 /4	
	13DN EIRK	PRI	0 /	
線	構内P	H S	15 / 20	
	構内PHS基地	局(CS)	3 台	
	局	線	26 / 28	
	ISDN 回線	BRI	5 / 8	
外	13DN EINK	PRI	/	
71	専用線	LD	/	
	守 几 沝	OD	/	
線	高速デジタル		/	
/17K	回处/ > //		/	
	その他		/	
			/	
その				
他				


→ 容量数はメーカー資料等で確認して下さい。

呼量による局線数の算出書

外線数	発着基礎呼量 [アーラン]	外線数	発着基礎呼量 [アーラン]	外線数	発着基礎呼量 [アーラン]
1	0.05	11	7. 08	21	16. 19
2	0.38	12	7. 95	22	17. 13
3	0.90	13	8.84	23	18.08
4	1. 53	14	9. 73	24	19.03
5	2. 22	15	10.63	25	19. 99
6	2.96	16	11. 54	26	20.94
7	3.74	17	12.46	27	21.90
8	4. 54	18	13. 39	28	22.87
9	5. 37	19	14. 32	29	23. 83
10	6. 22	20	15. 25	30	24.80
£111. La					

備考 発進基礎呼量は、呼損率 0.05 の場合を示す。

内信	青報通信網設備	スイッチ能力	計算書(1	(2)				建物名称	<u>ECO労</u>	師ビル新築	<u> </u>		年	月
	① L2スイッ	チ支線系	スイッチ処況	理能力、	スイッチン	/ グ容量の	算出							
∄	表-1 必要ポート数	女									表-2 伝送速度と処	L理能力/ポート		
	用途	ポート数			インター	フェース						ーフェース	処理能力	/ポー
	万 基	小 下数	1000BASE	-T }	※イ						規格	伝送速度	, 发生能力,	/ 411
	端末	10	10								10BASE-T	10 Mbps	0.015	Mb
-	プリンタ	2	2								100BASE-TX	100 Mbps	0. 149	Mb
١L	部門サーバー	1	1								1000BASE-T	1000 Mbps	1. 488	Mb
	一次側	1	1								10GBASE-T	- 10 Gbps	14. 881	Mb
L	予備	10	10								1GBASE-SR	To obps	14.001	MIO
	生:予備に関しては			慮して決	た定する。									
久	処理能力=Σ伝送速	度・必要ホート 処理能力/ポー		νí.	要ポート数	∜r		処理能力			インターフ	· 7		
		1. 488	[Mbps]	× ×	·安ホートを 24	ス ポート	1 —	处连能力	35. 7	[Mbps]	1000BASE-		じものを選	
		1. 400	[Mbps]	×	24	「ポート	_		00. 7	[Mbps]	TOODHOL	計算し		八 9
			[Mbps]	×		「ポート	-			[Mbps]		前昇し	より 。	
			[Mbps]	×		[ポート	-			[Mbps]				
			- 1 -	_		1	-							
						合 計			35. 7	[Mpps]以」	Ŀ.			
7	スイッチング容量=	- Σ 伝送速度 • :	2 (全二重の場	場合)・	必要ポート	、数								

合 計

48

構内情報通信網設備スイッチ能力計算書(2/2)

建物名称 ECO労師ビル新築工事

年 月 日

② L3スイッチ幹線系

スイッチ処理能力、スイッチング容量の算出

表-1 必要ポート数

用途	ポート数・		インターフェース								
用述	かー 下数	1000BASE-T ※ ✓	1GBASE−SR 💥 🗖								
幹線	3		3								
ファイルサーバ	1		1								
バックアップ系	2		2								
ファイヤウォール	1		1								
NW管理装置	1	1									
予備1	5		5								
予備2	5	5									
合計	18	6	12								

表-2 伝送速度と処理能力/ポート

2 日 日										
インター	インターフェース									
規格	伝送速度	処理能力/ポート								
10BASE-T	10 Mbps	0.015	Mbps							
100BASE-TX	100 Mbps	0. 149	Mbps							
1000BASE-T	1000 Mbps	1. 488	Mbps							
10GBASE-T	10 Gbps	14, 881	Mbps							
1GBASE-SR	10 gphs	14.001	Mobs							

注:予備に関しては、必要性、将来対応等を考慮して決定する。

処理能力=Σ伝送速度・必要ポート数

処理能力/ポート 必要ポート数 処理能力 1.488 [Mbps] [ポート] = 8.9 [Mbps] \times 178. 6 [Mbps] 14. 881 [ポート] = [Mbps] \times 12 [Mbps] \times [ポート] = [Mbps] [Mbps] \times [ポート] = [Mbps]

2

1000BASE-T ※イと同じ 1GBASE-SR ※ロと同じ

インターフェース

合 計

(全二重) (全二重)

(全二重)

187.5 [Mpps]以上

スイッチング容量= Σ 伝送速度・2(全二重の場合)・必要ポート数

伝送油度

伍 医		
1	[Gbps]	×
10	[Gbps]	×
	[Gbps]	×
	[Gbps]	×
	•	

必要ポート粉 全2重 (全二重)

,4	○女小 I' ৡ	X
×	6	[ポート]
×	12	[ポート]
×		[ポート]
×		[ポート]

スイッチング容量

合 計

252

拡声設備増幅器定格出力計算書

建物名称 <u>ECO労師ビル新築工事</u>

年 月 日

1. 増幅器の定格出力の算出

増幅器定格出力[W]=スピーカ総入力 (スピーカの定格 W 数の合計)以上

フロア	スピーカ出力[W]	台数	スピーカ出力[W]	台数	スピーカ出力[W]	台数	スピーカ出力合計 [W]
B1F	1	15	3	0			15
1F	1	18	3	0			18
2F	1	21	3	0			21
3F	1	20	3	0			20
4F	1	21	3	0			21
5F	1	15	3	2			21
スピー	カ総入力 [W]						116

増幅器出力 120 [W] スピーカ総入力値以上とします。

フロア、スピーカ出力、台数共に手入力とします。

テレビ共同受信設備について-1

- 1、設計基準の内容及び計算例を参考にしている他、電気設備標準図のデータを採用しています。
- 2、テレビ端子電圧については上限と下限があります。最も遠いテレビ端子の減衰量の計算がOKであっても近いところが上限値をオーバーして は不可となりますので注意が必要です。
- 3、上限値、下限値をオーバーすると<mark>赤</mark>数字で表示します。幹線、分岐・分配方法、配線サイズを変えてみる等検討してみて下さい。 いろんな方式(考え方)がありますので何パターンかの入力例で説明しています。
- 4、CS放送は周波数が大きいため損失も大きくなります。地デジとBSのみが映ったらよいとの条件であればCSで<mark>赤</mark>数値が表示されても無視して下さい。
- 5、アンテナ方式を例としていますがケーブルテレビ会社より引込む場合があります。この場合、一般的には光ケーブルで引込みされてきて変換器によって同軸ケーブルで伝送しているようです。変換器を出たところで 80dB に調整しているようですので、入力する場合はとりあえずアンテナ方式と同じように実効輻射電力、送受信点間距離を適当に入力し、1のアンテナ出力が 80dB になるようアンテナ実効長の数字を調整してみて下さい。アンテナは上から下への計算ですが逆に下から上に向かっての計算になります。

テレビ共同受信設備について-2

- 1、計算書の手引の入力例で選択しているブースターSH-UF-1 の特性についての説明をします。 定格出力レベルは UHF の場合 105 dB、CS/BS-IF は 103/113 (1000/3224MHz) です。 また標準利得は UHF で 40 dB以上、CS/BS-IF で 35/45 以上 (1000/3224MHz) です。
- 2、ここで重要なのは標準入力レベルです。つまり出力レベルから標準利得を差引いた値です。 UHFでは105-40=65 dB。CS/BS-IFでは103-35=68 dB、113-45=68 dBとなります。大規模、高層建物では最遠隔のテレビ端子迄は分岐、分配器、同軸ケーブルの減衰を経てブースター増幅しながら(カスケード)テレビ端子へ接続されていますがある程度減衰したらブースターで増幅することを繰返しています。配線設計での注意点はブースターに入る入力レベルを標準レベルを目標にすることです。
- 3、末端で 45 dB を減衰したからブースターで上げる。計算上は要求性能を満たせても入力が 45 dB ということは映像としては非常に悪くなっています。それを上げてもきれいな映像にはなりません。出来るだけブースターへの入力レベル値に留意して下さい。 それでは標準レベル値以下では絶対無理なのかといえば専門メーカーに確認も必要ですが概ね 55 dB以上あれば問題ないか考えます。

テレビ共同受信設備テレビ端子電圧計算書 (解説-1)

○テレビ端子電圧は、周波数帯域に応じて次により算出する。

①地上デジタル放送の場合

$$E_{Ut} = A_{UO} + K + G_B - L_f - L_m$$

ここに、

 E_{IIt} : テレビ端子電圧(地上デジタル放送) [dB μ V]

 A_{UO} : 地上波デジタル放送用アンテナ出力 [dB μ V]

$$A_{UO} = E_U + G_A + H_e$$

*E*₁₁ :電界強度 [dB μ V/m]

地上波デジタル放送帯域での電解強度は、自由空間電界強度 E_{0} とする。

$$E_0 = \sqrt{P/d}$$

ここに.

P: 実効輻射電力 [W]、d: 送受信点間距離 [m]

G_A : アンテナ利得 [dB] (表3-4)

He:アンテナ実効長[dB] 受信チャンネルを考慮し、表3-5より選定する。

K : 開放値から終端値への換算値 [dB] (−6 [dB])

G B : 増幅器利得 [dB]

 L_f : ケーブル損失 [dB]

ケーブル損失 = 減衰量(表3-3) × ケーブル長

L ... : 分岐器、分配器、テレビ端子等の機器損失 [dB]

②BSデジタル・CSデジタル放送の場合

$$E_{Bt} = A_{BO} + K + G_{B} - L_{f} - L_{m}$$

ここに、

 E_{Bt} : テレビ端子電圧 (BSデジタル・CSデジタル放送) [dB μ V]

 A_{BO} : BSデジタル・CSデジタル放送用アンテナ出力 [dB μ V]

※ BSデジタル・CSデジタル放送用アンテナ出力は、日本国内において一般的に利用されるコンバータ出力電圧の80[dBμV]とする。

K : 開放値から終端値への換算値 [dB] (-6[dB])

G B : 増幅器利得 [dB]

L : ケーブル損失 [dB]

ケーブル損失 = 減衰量(表3-3) × ケーブル長

L ... : 分岐器、分配器、テレビ端子等の機器損失 [dB]

テレビ端子の要求性能

周波数 項 目	UHF	BS・110度CS-IF	BS·110度CS-IF
	(地上波デジタル)	BS・広帯域CS	(高度BS·CS)
テレビ端子の要求性能[dBμV]	50~81	52~81	54~81

テレビ共同受信設備テレビ端子電圧計算書(解説-2)

電界強度計算

実効輻射電力

10 [kW]

数値入力

送受信点間距離

30 [km]

※ 10kW、30kmの例を示す。

(1) 470MHz [地上デジタル]

実効輻射電力10kW、送受信点間距離30kmの 場合、電界強度は左の式により計算される。

 $E_{U} = E_{0}$

 $E_0 = 7 \sqrt{10 \times 10^3} / 30 \times 10^3 = 0.0233$

1 [μV/m]を 0 [dBμV/m]としてデシベル変換すると $E_0 = 20 \times \log(0.0233 \times 10^6) = 87.359$

 $E_{II} = 87.3 \text{ [dB} \mu \text{ V]}$

 $G_A = 8.0$ (表3-3より)

 $H_e = -13.9$ (表3-4より)

- ① $A_{IIO} = 87.3-8.0-13.9=81.4 \text{ [dB } \mu \text{ V]}$
- ② $0.105 \times 10 = 1.05 \text{ [dB]}$ (表3-2より) ・・・

同軸ケーブル減衰量

③ 40 [dB]

(表3-6より) ・・・

增幅器利得 注) 2

④ $0.105 \times 1 = 0.11$ [dB] (表3-2より) ・・・

同軸ケーブル減衰量

⑤ 12 [dB]

(表3-7より) ・・・

2 分岐器結合損失

⑥ 0.105×11 = 1.16 [dB] (表3-2より) · · ·

同軸ケーブル減衰量

⑦ 8.0 [dB]

(表3-8より) ・・・

4 分配器分配損失

同軸ケーブル減衰量

9 0.6 [dB]

(表3-9より) ・・・

テレビ端子1端子形挿入損失

上記の通り数値を入力の上、テレビ端子電圧を計算する。

⑧ 0.145×12 = 1.74 [dB] (表3-2より) ・・・

(2) 710MHz [地上デジタル]

470MHzと同様に計算する。

※周波数ごとにケーブル・機器の減衰量が変わるので注意する。

(3) 1000MHz [BSデジタル]

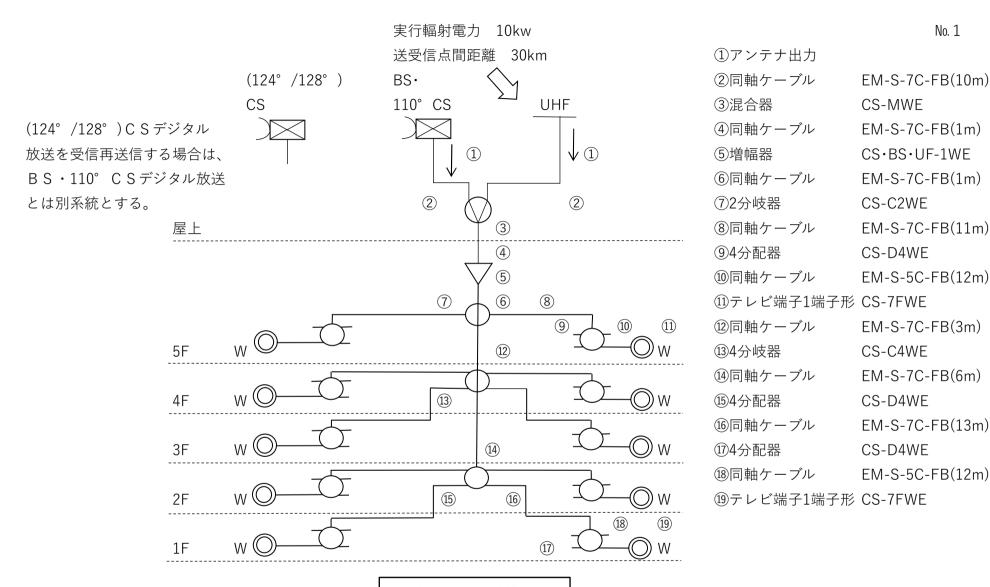
BSアンテナ出力においては75 [dB µ V]とし、その他は地上デジタルと同様に計算する。

(4) 1489MHz [BSデジタル]

1000MHzと同様に計算する。

(5) 2150MHz [CSデジタル]

1000MHzと同様に計算する。

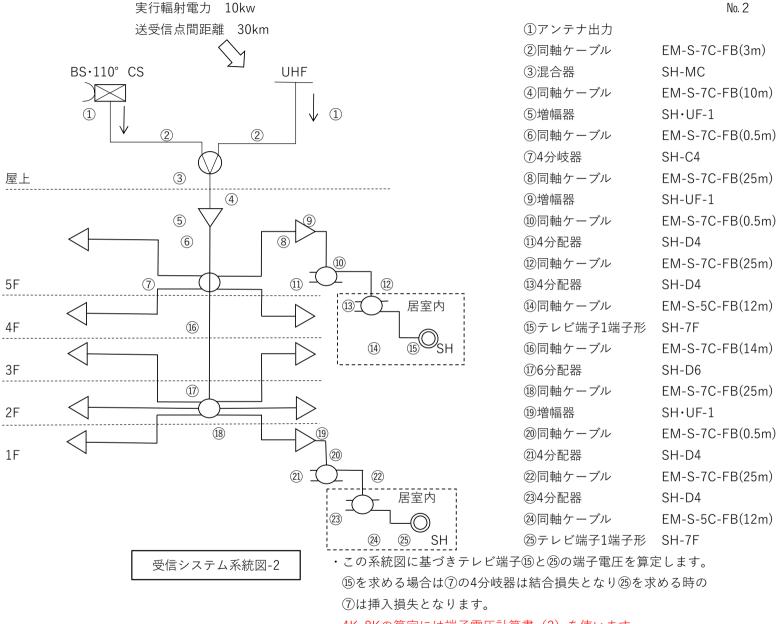

(6) 2602MHz「CSデジタル]

1000MHzと同様に計算する。

(7) 2681~3224MHz[高度BS·CS]

1000MHzと同様に計算する。

※ (表3-3~表3-13) は**建築設備設計基準及び同資料 第3編第7章第3節**による。



受信システム系統図-1

・この系統図に基づいてテレビ端子⑪~⑲の端子電圧を 算定します。⑪を求める場合は⑦の2分岐器は結合損 失となり⑲を求める時の⑦は挿入損失となります。

### ### ### ### ### ### ### ### ### ##	テレ	ビ共同受信設備テ	レビ端子電圧	計算書(1)			<u> </u>	建物名称	ECO労師 L	ル新築工事							年	月日	
Windows April		ここに、P: 実効輻!	射電力 [W]	9				Υ[kW]、ä	送受信点間	距離		$1 \left[\mu \text{ V/m} \right]$	を $0[dB\mu V/m]$	としてデシベ		ځ				
そのでは、	電界	強度計算	入力																	
27.3 28.9 10.0 1.00 1.890 2.150 2.902		実効輻射電力	10	[kW]									テレ	/ビ端子() 電	圧の計算				
## (>		LJ									, ,		地上デジタ	N	BS•CS	テ゛シ゛タル		
### 1		電界強度	87. 3	[dB μ V/		07.	3200	いまり。				7			470 7	10 1000	1489	2150	2602	
物質 18-15 ** 94			= 1	. ア. J.	, ,,,,	東田の	·크l. 삼					の端子より	分岐 端子電圧	ldB μ V J						
別点数 (Misc)				ノヒ端ナ(計昇	RS • CS	テ゛シ゛ タル											
### ### #############################		周波数 [MHz] 47					1000		1	2602										
### 1		E _U :電界強度 [dBμV/m] 87																		
### ### ### ### ### ### ### ### ### ##		G _A : アンテナ利得 [dB] 入力			9	_	_	_	_	+	植果									
1 A co. A po. 77円出方 (8B v) 75.4 72.91 75 75 75 75 75 75 75 75 75 75 75 75 75								_	_	_	1	a Tee Tee								
2 回軸・フ・経済章 (18) 数重(18) 1.05 1.33 1.64 2.1 2.65 3 3 正合書 入力 (18 μ V) 74.35 71.58 73.36 72.9 72.35 72 3 正合書 入力 (18 μ V) 73.05 72.9 72.95 72 3 6 同軸・フ・経済量 (18) 1.3 1.3 1.3 3.3 3.3 3.3 3					-		7.5	75	7.5	75										
2 10.0 1.0	1				/5. 4	72. 91	/5	/5	/5	/5		型目, 回軸		**-县-[]		/A 古	[at] 县;			
混合器	2				1. 05	1. 33	1. 64	2. 1	2. 65	3		お具・円軸/)—)	叙重[m]		例 宏	里 [GB]			
3 1.3 1.3 1.3 1.3 3 3 3 3 3 3 3 3 3					74 35	71 58	73 36	72 9	72 35	72										
The content of th	3	混合器																		
The content of th		CS-MWE			73. 05	70. 28	70. 36	69. 9	69. 35	69	i i	計算式の説明								
10 10 10 10 10 10 10 10	4				0 11	0 14	0 17	0 21	0 27	0.3		で 女 図 ① の 世 フ 南 口 ナ 笠 ウ し ナ い ナ ナ								
1		EM-S-70										示机区 (1)(7)	/ - 加丁电圧で昇	たしていま	9 0					
CS · BS · UF-INE Reham Total		増幅器										アンテナ利	得、アンテナ	実効長は手	入力とし、	ていますが	設計基準	の数値		
BB File	5		1111 0 0	1																
105 105 100. 19 102. 69 106. 18 108. 7		CS • BS • UF-1WE	7 - 77-7 17 - 2	2																
1.0 0.11 0.14 0.17 0.21 0.27 0.3 0.27 0.3 0.27 0.3 0.27 0.3 0.27 0.3			щ,5 [авр. 1]								-									
1.0 0.11 0.14 0.17 0.21 0.27 0.3 7 2分岐器結合損失 结合損失です。		器具・同軸]ケーフ゛ル	数量[m]			減衰	量 [dB]								距離を適当	な値に調	整し、		
7 2万 映 整新台 損失 活合 損失です。 1.0 12 12 13 13 14 15 8 同軸ケブ N減衰量 ENS-70-FB 11.0 1.16 1.47 1.81 2.31 2.92 3.3 9 4分配器分配損失 CS-D4WE 1.0 8 8 9 9 10.5 11.5 10 同軸ケブ N減衰量 ENS-50-FB 12.0 1.74 2.2 2.69 3.41 4.26 4.8 11 7 い は 第子1端子挿入損失 1.0 0.6 0.6 0.8 0.8 1.5 2	6			1.0	0. 11	0.14	0. 17	0. 21	0. 27	0. 3										
8	7	2分岐器結合損失 結 CS-C2WE	合損失です。	1.0	12	12	13	13	14	15		若干超えて	いるからです	。この程度	であれば	算出結果を	調整する	必要は		
9 4分配務分配損失 CS-04WE 1.0 8 8 9 9 10.5 11.5 10 同軸ケーブル液衰量 EM-S-5C-FB 12.0 1.74 2.2 2.69 3.41 4.26 4.8 11 7レビ端子挿入損失 CS-7FWE 1.0 0.6 0.6 0.8 0.8 1.5 2	8			11. 0	1. 16	1. 47	1. 81	2. 31	2. 92	3. 3		は問題あり	ません。但し	、下限値以	下で赤がは					
10 EM-S-5C-FB 12.0 1.74 2.2 2.69 3.41 4.20 4.8 11 7比*端子插入损失 1.0 0.6 0.8 0.8 1.5 2	9			1.0	8	8	9	9	10. 5	11.5		ので系統の	見直し等が必	要となって	きます。					
TI CS-7FWE 1.0 0.6 0.6 0.8 0.8 1.5 2	10			12. 0	1. 74	2. 2	2. 69	3. 41	4. 26	4. 8										
11 の端子電圧 [dB µ V] 81.3 80.5 72.7 73.9 72.7 71.8 の端子電圧 [dB µ V]	11		ŧ	1.0	0. 6	0. 6	0.8	0.8	1. 5	2										
11 の端子電圧 [dB µ V] 81.3 80.5 72.7 73.9 72.7 71.8 の端子電圧 [dB µ V]		10 77 112																		
11 の端子電圧 [dB µ V] 81.3 80.5 72.7 73.9 72.7 71.8 の端子電圧 [dB µ V]																				
		11 の端子電圧[[dB μ V]		81.3	80. 5	72. 7	73. 9	72. 7	71.8		の端子電圧	[dB μ V]							

テレ	テレビ共同受信設備テレビ端子電圧計算書(1) <u>建物名称</u> <u>ECO労師ビル新築工事</u>									上工事		
電界	強度 $E_o = 7 \sqrt{1}$ ここに、 $P:$ 実効 d:送受					射電力 2			距離			$E_{\theta} [dB \mu V/m] = 201 \log (Z \times 10^{6})$
電界	強度計算 実効輻射電力 送受信点間距離 電界強度	入力 10 30 87.3	[kW] [km]		<u>ک</u> ح	なってし いますか	いますが が、正確	E <i>0</i> = には0.0	計算例で 0.023と 2333です 9となるの	刃捨て ·。		デレビ端子 (15) 電圧の計算 帯域 地上デ゚シ゚タル BS・CSテ゚シ゚タル 入力必須 周波数[MHz] 470 710 1000 1489 2150 2602
		帯域	/ビ端子(地上テ				デッタル			14	EM-2-2C-FR
	E _U :電界引 G _A :7	数 [MHz] 鱼度 [dBμV/m] /テナ利得 [dB]	入力			1000 —	1489 — —	2150 — —	2602 — —		ሊ力	Hé fig 程 入力 [dB μ V]
1	K:開放値から約	ft実効長[dB] §端値への換算値[ο:アンテナ出力[dBμ	[dB]	-13. 9 -6 75. 4	-17. 39 -6 72. 91	- 75	75	75	75			利得 [dB] 定格出力 [dB] 出力 [dBμV]
2	EM-S-	7C−FB	数量[m] 10.0	1. 05 74. 35	1. 33 71. 58	1. 64 73. 36	2. 1 72. 9	2. 65 72. 35	3 72		入力 15	
3	混合器 CS-MWE 同軸ケーブル)	減衰量 [dB] 出力 [dB μ V] 或衰量 [dB]	数量[m]	1. 3 73. 05	1. 3 70. 28	70.36	69. 9	69. 35	69	_		増幅器を入力せずにとばしてここに端子を入力して下さい。
4	EM-S- 増幅器	7C-FB	1.0	72. 94 40	70. 14 40	70. 19 30	0. 21 69. 69 33	0. 27 69. 08 37. 1	0. 3 68. 7 40	_		
5	CS - BS - UF-1WE	定枚出力 [dR]]	105 105	105 105	103 100. 19	106 102. 69	110. 1 106. 18	113 108. 7			計算式の説明 ・系統図19の端子電圧を算定しています。
	器具・F]軸ケーフ゛ル	数量[m]	105	105	100.19 減衰	102.69 量「dB]	106. 18	108. 7			水削凶慢の利用を圧と昇足しているす。
6	同軸ケープル減衰量 EM-S-7C-FB		1.0	0. 11	0.14	0. 17	0. 21	0. 27	0. 3			・ここでは受信点より⑪迄に経由するケーブル・機器から端子迄は 1~15となります。
7	2分岐器挿入損失 CS-C2WE 同軸ケーフ・ル減衰量	挿入損失です。	1.0	2. 5	2. 5	3	3	4. 5	6	-		
9	EM-S-7C-FB 4分岐器挿入損失 CS-C4WE		3. 0 1. 0	0. 32 4. 5	0. 4 4. 5	0. 5 5. 5	0. 63 5. 5	0.8	0. 9 6. 5	_		
10	同軸ケーフ・ル減衰量 EM-S-7C-FB		6. 0	0. 63	0.8	0. 99	1. 26	1. 59	1. 8	-		
11	4分配器分配損失 CS-D4WE		1.0	8	8	9	9	10. 5	11.5			
12	同軸ケーフ・ル減衰量 EM-S-7C-FB		13. 0	1. 37	1. 73	2. 14	2. 73	3. 45	3. 9			
13	4分配器分配損失 CS-D4WE	: [JD V]	1. 0	8 70 F	70.0	9	71. 3	10. 5 68. 5	11. 5 66. 3			15 の端子電圧 [dB µ V] 77.2 76.1 66.4 67.1 62.8 59.5
	13 の端子電圧 [dB μ V] 79.5 78.9 69.1				09. ŏ	/1.3	08. ე	00.3			10 ソ州 「毛圧 [(ロル 1) 11.2 10.1 00.4 01.1 02.8 59.5	

4K・8Kの算定には端子電圧計算書(2)を使います。

テレビ共同受信設備テレビ端子電圧計算書 (2-1)

入力

建物名称 <u>ECO労師ビル新築工事</u>

入力

年 月 日

電界強度 $E_0 = 7$ $\sqrt{P/d}$

電界強度計算

ここに、P: 実効輻射電力 [W]

d : 送受信点間距離 [m]

(計算例)

実効輻射電力 X[kW]、送受信点間距離 Y[km]の場合

 E_{θ} [V/m] = 7 $\sqrt{X \times 10^3 / Y \times 10^3}$ = Z [V/m] 1 [μV/m]を0 [dBμV/m]としてデシベル変換すると E_{θ} [dB μ V/m] = 20log ($Z \times 10^6$)

也クド	カススロ 弁	7773	_							7777	ノース	ゾー
	実効輻射電力	10	[kW]			増	幅器を力	スケードに	こする数	2	+	_
	送受信点間距離	30	[km]		増幅器類	官格出力の	運用レベ	ルを定格	出力から	欠の		
	電界強度	87.3	[dB μ V,	/m]	数を差引	<				3		
					入力							
			テレ	ビ端子(8)電圧の	計算					入
	帯域			地上ラ	゛シ゛タル			BS • CS	r``シ`` <i>タル</i>			
	周波数 [MHz]			470	710	1000	1489	2150	2681	3224		
	E _U :電界強度 [dBμ			87. 3	87. 3	_	_	_	-	_		
	G_A : アンテナ利得 [d		入力	8	9		_	_	-	_		
	He: アンテナ実効長		入力	-13. 9	-17. 39		_	_	-	_	9	7
	K:開放値から終端値への			-6	-6	_	_	_	-	_		Į.
1	A_{UO} 、 A_{BO} : アンテナ日		V]	75. 4	72. 91	75	75	75	75	75		
2	同軸ケーフ・ル減衰量 [dB	3]	数量[m]	0. 32	0.4	0.5	0, 63	0.8	0. 92	1. 04	入力	<u>ታ</u>
_	EM-S-7C-FB	ı	3. 0								10	F
	混合器	入力 [dl		75. 08	72. 51	74. 5	74. 37	74. 2	74. 08	73. 96		1
3			[dB]	1. 3	1. 3	3	3	3	3	3. 5	11	4
	SH-MC	出力 [dl		73. 78	71. 21	71. 5	71. 37	71. 2	71. 08	70. 46		
4	同軸ケーブル減衰量 [dB	3]	数量[m]	1, 05	1. 33	1. 64	2. 1	2. 65	3.06	3, 46	12	F
•	EM-S-7C-FB		10. 0									
	増幅器	入力 [dl		72. 73	69.88	69. 86	69. 27	68. 55	68. 02	67	13	4:
5		利得 [d]	B]	40	40	35	37. 1	40. 1	42. 5	45	10	
•	SH-UF-1	定格出力		105	105	103	105. 1	108. 1	110.5	113	14	F
	5.1. 5.1 .	出力 [dl	BμV]	102	102	100	102. 1	105. 1	107. 5	110		
				102	102	100	102. 1	105. 1	107. 5	110	15	Ŧ
	器具・同軸ケーブル		数量[m]			洞	表 量 [d	В]				
6	同軸ケーフ・ル減衰量 EM-S-7C-FB		0. 5	0. 06	0. 07	0. 09	0. 11	0. 14	0. 16	0. 18		
7	4分岐器 結合損失 SH-C4		1.0	12	12	13	13	15	16. 5	18. 5		T
8	同軸ケーフ・ル減衰量 EM-S-7C-FB		25. 0	2. 63	3. 33	4. 1	5. 25	6. 63	7. 65	8. 65		Ī
												1
												\parallel
												Ц
	8 の端子電圧 [dB	μ V]		87. 3	86. 6	82. 8	83. 7	83. 3	83. 1	82. 6		

ブース	ターが2段に設置されてし	いるため	テレ	ビ端子(15) 電圧の	計質			
	帯域		, -		*シ*タル	/ HE/LL */	PI SP	BS • CS	テ゛シ゛タル	
	周波数「MHz		470	710	1000	1489	2150	2681	3224	
	8 の端子より分岐 端子電圧				86. 60	82. 81	83. 74	83. 33	83. 19	82. 67
	入力必須									
	増幅器	入力 [dB	μV]	87.3	86. 6	82. 8	83. 7	83. 3	83. 2	82. 7
9	入力	利得 [dB]	40	40	35	37. 1	40. 1	42. 5	45
9	OH HE 1	定格出力	[dB]	105	105	103	105. 1	108. 1	110.5	113
	SH-UF-1	出力 [dB	μV]	102	102	100	102. 1	105. 1	107. 5	110
入力	カ 器具・同軸ケーブル		数量[m]			洞	衰量[d	B]		
10	同軸ケーブル減衰量 EM-S-7C-FB		0. 5	0. 053	0. 067	0. 082	0. 105	0. 133	0. 153	0. 173
11	4分配器 分配損失 SH-D4		1.0	8	8	9	9	10. 5	11. 5	13
12	同軸ケーブル減衰量 EM-S-7C-FB		25. 0	2. 625	3. 325	4. 1	5. 25	6. 625	7. 65	8. 65
13	4分配器 分配損失 SH-D4		1.0	8	8	9	9	10. 5	11.5	13
14	同軸ケープル減衰量 EM-S-5C-FB		12. 0	1. 74	2. 196	2. 688	3. 408	4. 26	4. 896	5. 508
15	テレビ。端子1端子挿入損失 SH-7F		1.0	0. 5	0. 5	0.8	0. 8	1	1.5	1. 5
	入力例の説明 ・4K・8Kが算出で ・9の増幅器に入	1+==	0冷卦笛	. <i>±</i> 0	トでの太	. 7. 1. 1. 1. 2	ما 2			
	左の8の端入電匠 9と入力します。	Eが入り	ます。そ	れから	の増幅	器に接続	されるか			
	15 の端子電圧 [d	dΒμV]		81.0	79. 9	74. 3	74. 5	72. 0	70. 3	68. 1

テレビ共同受信設備テレビ端子電圧計算書(2-1)

入力

建物名称 <u>ECO労師ビル新築工事</u>

入力

年 月 日

電界強度 $E_0 = 7$ $\sqrt{P/d}$

電界強度計算

ここに、P: 実効輻射電力 [W]

d : 送受信点間距離 [m]

(計算例)

実効輻射電力 X[kW]、送受信点間距離 Y[km]の場合

 E_{θ} [V/m] = 7 $\sqrt{X \times 10^{3}/Y \times 10^{3}}$ = Z [V/m] 1 [μ V/m]を0 [dB μ V/m]としてデシベル変換すると E_{θ} [dB μ V/m] = 201og($Z \times 10^{6}$)

	実効輻射電力	[kW]			増	幅器を力	スケードに	こする数	2		
	送受信点間距離	30	[km]		増幅器に	官格出力σ	運用レベ	ルを定格	出力から	欠の	
	電界強度	87.3	[dB μ V/	/m]	数を差引	H <				3	
					入力	_					
			テレ	ビ端子(10)電圧の	計算				
	帯域			地上テ	地上デジタル BS・CSデジタル						
周波数 [MHz]				470	710	1000	1489	2150	2681	3224	
	E_U :電界強度 [dB μ	V/m]		87. 3	87. 3	_	_	_	_	-	
	G_A : アンテナ利得 [dB]	入力	8	9	-	_	_	_	-	
	He: アンテナ実効長	[dB]	入力	-13. 9	-17. 39	-	_	_	_	_	
	K: 開放値から終端値への	換算値 [d	B]	-6	-6	_	_	_	_	_	
1	A_{UO} 、 A_{BO} : アンテナ日	出力 [dBμ	V]	75. 4	72. 91	75	75	75	75	7!	
2	同軸ケーフ、ル減衰量 [dB	3]	数量[m]	0. 32	0. 4	0.5	0. 63	0.8	0. 92	1. 04	
_	EM-S-7C-FB		3. 0	0. 32	0.4	0. 5	0. 03	0.8	0. 92	1. 02	
	混合器	入力 [dl	B μ V]	75. 08	72. 51	74. 5	74. 37	74. 2	74. 08	73. 96	
3	浜	減衰量	[dB]	1. 3	1.3	3	3	3	3	3. 5	
	SH-MC	出力 [d]	B μ V]	73. 78	71. 21	71. 5	71. 37	71. 2	71. 08	70. 40	
4	同軸ケーブル減衰量 [dB	3]	数量[m]	1 05	1 22	1 64	0.1	0.65	2.06	3, 46	
4	EM-S-7C-FB		10. 0	1. 05	1. 33	1. 64	2. 1	2. 65	3. 06	3. 40	
	神中巴品	入力 [d]	B μ V]	72. 73	69.88	69. 86	69. 27	68. 55	68. 02	6	
5	増幅器	利得 [d]	B]	40	40	35	40. 1	40. 1	42. 5	45	
9	SH-UF-1	定格出力	J [dB]	105	105	103	108. 1	108. 1	110.5	113	
	3N-UF-1	出力 [d]	B μ V]	102	102	100	105. 1	105. 1	107.5	110	
				102	102	100	105. 1	105. 1	107. 5	110	
	器具・同軸ケーブル		数量[m]			減	浪 量 [d	B]			
6	同軸ケーフ・ル減衰量 EM-S-7C-FB		0.5	0. 06	0. 07	0.09	0. 14	0. 14	0. 16	0. 18	
7	4分岐器 挿入損失 SH-C4		1.0	4. 5	4. 5	5. 5	6	6	6. 5	7. !	
8	同軸ケーフ・ル減衰量 EM-S-7C-FB		14. 0	1. 47	1. 87	2. 3	3. 71	3. 71	4. 29	4. 8	
9	6分配器 分配損失 SH-D6		1.0	11	11	12	14	14	16	18	
0	同軸ケーフ [*] ル減衰量 EM-S-7C-FB		25. 0	2. 63	3. 33	4. 1	6. 63	6. 63	7. 65	8. 6	
	10 の端子電圧 [dB	10 の端子電圧 [dBμV]					74. 6	74. 6	72. 9	70.	

					入力	1				
	44.44		テレ	ビ端子()電圧の	計算	PG . CC	-* \.* h.a	
	帯域				デシ゛タル 710	1000	1.100	1	テ゛シ゛タル 0.001	1 2204
 1	周波数 [MHz]		-r. 177	470	710	1000	1489	2150	2681	3224
_/	10 の端子より分岐	端子電圧	E[dBμV]	82. 34	81. 23	76. 01	74. 62	74. 62	72. 90	70. 82
	入力必須									
_										
	.₩T≒ 00	入力 [dB	3 μ V]	82. 3	81. 2	76. 0	74. 6	74. 6	72. 9	70.8
11	増幅器 入力	利得 [dB		40	40	35	37. 1	40. 1	42. 5	45
11		定格出力	[dB]	105	105	103	105. 1	108. 1	110.5	113
- 1	SH-UF-1	出力 [dB	μ V]	102	102	100	102. 1	105. 1	107.5	110
入力	器具・同軸ケーブル		数量[m]			滷	成 衰 量 [dl	ıB]		
12	日本に がははち見		0. 5	0. 053	0. 067	0. 082	0. 105	0. 133	0. 153	0. 173
13	4分配器 分配損失 SH-D4		1.0	8	8	9	9	10. 5	11.5	13
14	同軸ケープル減衰量 EM-S-7C-FB		25. 0	2. 625	3. 325	4. 1	5. 25	6. 625	7. 65	8. 65
15	4分配器 分配損失 SH-D4		1.0	8	8	9	9	10. 5	11. 5	13
16	同軸ケーブル減衰量 EM-S-5C-FB		12. 0	1. 74	2. 196	2. 688	3. 408	4. 26	4. 896	5. 508
17	テレビ端子1端子挿入損失 SH-7F		1.0	0. 5	0. 5	0.8	0.8	1	1.5	1. 5
	入力例の説明 ・前頁は⑮の端子・ ・系統図の番号と			一トは系	·統図②(の端子電	圧を求め	りていま	す。	
	<u> </u>		١ .			1				1

受信システム系統図-3

・カスケード利用の代表例です。増幅器を計4台設けています。

テレビ共同受信設備テレビ端子電圧計算書(2-1)

d : 送受信点間距離 [m]

建物名称 <u>ECO労師ビル新築工事</u>

年 月 日

電界強度 $E_0 = 7$ $\sqrt{P/d}$

ここに、P: 実効輻射電力 [W]

(計算例)

実効輻射電力 X[kW]、送受信点間距離 Y[km]の場合

 E_{θ} [V/m] = 7 $\sqrt{X \times 10^{3}/Y \times 10^{3}} = Z$ [V/m] 1 [μ V/m]を0 [dB μ V/m]としてデシベル変換すると E_{θ} [dB μ V/m] = 201og($Z \times 10^{6}$)

 電界強度計算
 入力

 実効輻射電力
 10 [kW]
 増幅器をカスケードにする数 4

 送受信点間距離
 30 [km]
 増幅器定格出力の運用レベルを定格出力から次の 数を差引く 6

 電界強度
 87.3 [dB µ V/m]
 数を差引く 6

					人刀					
			テレ	ビ端子()電圧の	計算			
	帯域		゛シ゛タル				デ`シ`タル			
	周波数 [MHz]			470	710	1000	1489	2150	2681	3224
	E _U :電界強度 [dBμ			87. 3	87. 3	_	_	_	_	_
	G_A : アンテナ利得[入力	8	9		_	_	_	_
	He: アンテナ実効長 [dB] 入力			-13. 9	-17. 39		_	_	_	_
	K:開放値から終端値への換算値 [dB]			-6	-6	_	_	_	_	_
1	001 20 1111		V]	75. 4	72. 91	75	75	75	75	75
2	同軸ケーブル減衰量 [dB] EM-S-7C-FB		数量[m]	0. 32	0.4	0.5	0. 63	0.8	0. 92	1. 04
_			3. 0						0.02	
	混合器	入力 [d		75. 08	72. 51	74. 5	74. 37	74. 2	74. 08	73. 96
3		減衰量		1. 3	1. 3	3	3	3	3	3. 5
	SH-MC	出力 [d		73. 78	71. 21	71. 5	71. 37	71. 2	71. 08	70. 46
4	同軸ケーフ゛ル減衰量 [dE	3]	数量[m]	1. 05	1. 33	1. 64	2. 1	2. 65	3.06	3, 46
•	EM-S-7C-FB		10. 0							
	増幅器	入力 [d		72. 73	69.88	69. 86	69. 27	68. 55	68. 02	67
5	PETER NO.	利得 [d		40	40	35	37. 1	40. 1	42. 5	45
٦	SH-UF-1	定格出力	り [dB]	105	105	103	105. 1	108. 1	110.5	113
	of of t	出力 [d	BμV]	99	99	97	99. 1	102. 1	104. 5	107
				99	99	97	99. 1	102. 1	104. 5	107
	器具・同軸ケーブル		数量[m]	減 衰 量 [dB]						
6	同軸ケーフ・ル減衰量 EM-S-7C-FB		1.0	0. 11	0. 14	0. 17	0. 21	0. 27	0. 31	0. 35
7	2分配器 分配損失 SH-D2		1.0	4	4	4. 5	4. 5	5. 5	6. 5	7. 5
	7 の端子電圧 [dB	μV]	•	94. 8	94. 8	92. 3	94. 3	96. 3	97. 6	99. 1

W. I. b.		テレ	ビ端子() 電圧の	計算			
帯域			地上テ				BS • CS	· ·	
入力必須 周波数 [MHz]	470	710	1000	1489	2150	2681	3224		
7 の端子より分岐	端子電圧	E[dB μ V]	94. 89	94. 86	92. 33	94. 39	96. 33	97. 69	99. 15
8 同軸ケープル減衰量 EM-S-7C-FB		100.0	10.5	13. 3	16. 4	21	26. 5	30. 6	34. 6
入力 ·									
· W I → BB	入力 [dB	μV]	84. 4	81. 6	75. 9	73. 4	69. 8	67. 1	64. 6
増幅器	利得「dB		40	40	35	37. 1	40. 1	42. 5	45
9 入力	定格出力	[dB]	105	105	103	105. 1	108. 1	110.5	113
SH-UF-1	出力 [dB		99	99	97	99. 1	102. 1	104. 5	107
入力 器具・同軸ケーブル	.4,, , ,	数量[m]				· 衰量 [d			
10 同軸ケーブル減衰量 EM-S-7C-FB		100.0	10. 5	13. 3	16. 4	21	26. 5	30. 6	34. 6
EM-3-7C-FB									
・系統図No. 3の <i>入</i>	∖力例で つ	す。大規	見模物件に	に多用さ	れる計算	算シート	です。		
					れる計算	算シート	です。		
・系統図No.3の入 ・ここまで入力し					れる計算	算シート	です。		
					れる計算	算シート	です。		
					れる計算	算シート	です。		
					れる計算	章シート	です。		
					れる計算	算シート	です。		
					れる計算	算シート	です。		
					れる計算	算シート	です。		
					れる計算	草シート	です。		
					れる計算	算シート	です。		
					れる計算	算シート	です。		
					れる計算	草シート	です 。		

テレ	ビ共同受信設備テレヒ	`端子電」	上計算書	¥ (2−2	2)			<u>建</u>	物名称	ECO労師	ビル	新築二	I
	増幅器をカスケード	こする数	4			増幅	器定格出	力から差し	し引く数	6			
				1	入力								
	W. I. b.		テレ	ビ端子(21)電圧の	計算					_	
1 +	帯域]必須 周波数「MHz [*]	1			* シ* タル	1000	1.400		デジ・タル	0004			_
人 /	必須		Ξ[dB μ V]	470 88. 50	710 85 . 70	1000 80 . 60	1489 78. 10	2150 75. 60	2681 73. 90	3224 72 . 40			_
11	2分岐器 挿入損失 入力SH-C2	細り电石	1. 0	2. 5	2. 5	3	3	4. 5	6	6. 5			-
12	同軸ケーブル減衰量 入力EM-S-7C-FB		1.0	0. 11	0. 14	0. 17	0. 21	0. 27	0. 31	0. 35			-
	1947年100	入力 [dB	μV]	85. 9	83. 1	77. 4	74. 9	70.8	67. 6	65. 6			
13	増幅器	利得 [dB]	40	40	35	37. 1	40. 1	42. 5	45			
13	入力 SH-UF-1	定格出力	[dB]	105	105	103	105. 1	108. 1	110.5	113			
		出力 [dB	μV]	99	99	97	99. 1	102. 1	104. 5	107			
入力	器具・同軸ケーブル		数量[m]			涧	录 量 [d	B]					
14	同軸ケープル減衰量 EM-S-7C-FB		80. 0	8. 4	10. 64	13. 12	16. 8	21. 2	24. 48	27. 68			
15	4分配器 分配損失 SH-D4		1.0	8	8	9	9	10.5	11. 5	13			
16	同軸ケープ・ル減衰量 EM-S-7C-FB		1.0	0. 11	0. 14	0. 17	0. 21	0. 27	0. 31	0. 35			
	増幅器	入力 [dB		82. 5	80. 2	74. 7	73. 1	70.1	68. 2	66. 0			
17	- 1 (ы. п.	利得 [dE		40	40	35	37. 1	40. 1	42. 5	45			
	SH-UF-1	定格出力		105	105	103	105. 1	108. 1	110.5	113			
	日共にでは大き見	出力 [dB	μ V]	99	99	97	99. 1	102. 1	104. 5	107			_
18	同軸ケープル減衰量 EM-S-7C-FB		60. 0	6. 3	7. 98	9. 84	12. 6	15. 9	18. 36	20. 76			
19	4分配器 分配損失 SH-D4		1.0	8	8	9	9	10. 5	11. 5	13			
20	同軸ケーブル減衰量 EM-S-5C-FB		30. 0	4. 35	5. 49	6. 72	8. 52	10. 65	12. 24	13. 77			
21	テルビ、端子1端子挿入損失 SH-7F		1.0	0. 5	0. 5	0.8	0.8	1	1.5	1.5			
	21 の端子電圧 [d	BμV]		79.8	77. 0	70. 6	68. 1	64. 0	60. 9	57. 9			_

帯域		1 / /	ビ端子 (地上テ) 電圧の	口牙	De . ce	テ゛シ゛タル	
用波数 [MHz	.1		470	710	1000	1489	2150	2681	322
の端子より分岐		E[dBμV]	470	710	1000	1409	2130	2001	344
の施士より万岐	% T 电/	E LUD μ V J							
増幅器	入力 [dl	BμV]							
增幅器	利得 [dl	3]							
	定格出力								
	出力 [di								
器具・同軸ケーブル		数量[m]			海	表 量 [c	lB]		
	入力 [di	177							
増幅器	利得 [dl								
	定格出力	_							
	出力 [di								
	дру [ал	,μ,,							
・このシート	を追加し	していけ	ばいくら	でも計	算できま	きす。			
増幅器への	入力レイ	ベル値に	注意した	がら進	めて下さ	ะเา็			
								J	

建物名称 ECO労師ビル新築工事

年 月 日

録画装置容量の算出

デジタル記憶媒体の容量>カメラ1台当たりの容量×カメラ台数

①画像圧縮方式をH. 264とした場合

計算条件 カメラ台数 : 1[台]

> 640 × 480 解像度

伝送レート 300 [kbps] 10 [day] 録画時間

ビット・バイト換算値 : 8[bit/Bvte]

伝送からの記憶媒体容量変化値

: 1,024[bit/kbit]

録画時間[s]=日数 [day]・24[h]・60[min]・60[s]

 $10 \times 24 \times 60 \times 60$ 864, 000 [s]

容量= 伝送レート[kbps]・伝送レートからの記憶媒体容量変化値[bit・kbit] ・録画時間[s]/ビットバイト換算値[bit/bvte]

300 ×1,024× 864, 000 33, 177, 600, 000 [kB] **33**. **2** [GB]

②画像圧縮方式をMotion-IPEGとした場合(カメラ1台当たり)

計算条件 カメラ台数

: 1[台]

解像度

録画時間

640 × 480 (記録サイズ: 40 [kB]相当)

フレームレート

5 [fps] 10 [day]

フレームレートからの記憶媒体容量%:

: 1,024[bit/kbit]

録画時間[s]=日数 [day]・24[h]・60[min]・60[s]

 $10 \times 24 \times 60 \times 60$ 864, 000 [s]

容量= 記録サイズ[kB]・フレームレートからの記憶媒体容量変化値 ・フレームレート[fps]・録画時間[s]

40 ×1, 024× 864.000 176, 947, 200, 000 [kB] 176. 9 [GB]

参考:カメラ性能による伝送レート (H. 264)、記録サイズ (Motion-TPEG) を示す。

表1 カメラ性能による伝送レート(H 264) 参考値

双1 カアノ圧肥による	J A A D T (11, 204) 参与 [6	3.
方式	解像度	伝送レート*
カラー (標準)	640×480 以上	300[kbps]
カラー (HD)	1,280×720 以上	1,000[kbps]
カラー(フルHD)	1,920×1,080 以上	2,000[kbps]

* 画像符号化圧縮率によっても異なります。

表2 カメラ性能による記録サイズ(Motion-JPEG)参考値

方式	解像度	記録サイズ*
カラー(標準)	640×480 以上	40[kB]
カラー (HD)	1,280×720 以上	128[kB]
カラー(フルHD)	1,920×1,080 以上	270[kB]

* 画像符号化圧縮率によっても異なります。

枠内のみ入力すれば自動計算します。